HILLSIDE HOUSING DEVELOPMENT

DESIGN GUIDELINES CHECKLIST

GENERAL INFORMATION

WHAT ARE DESIGN GUIDELINES?
The City’s Design Guidelines establish a set of goals, values, and qualities by which projects are evaluated in design review. They outline clear expectations that projects must demonstrate to be successfully entitled. Design guidelines assist applicants and the public in understanding both the design review meeting procedures and to define the major concerns and objectives of the design review process. Separate documents provide detailed direction for certain areas or types of projects.

HOW DO I APPLY THE GUIDELINES?
Not all guideline techniques or approaches are appropriate or practical for every development project. When designing your project, identify as many of the design techniques and approaches used in order to achieve the guideline objectives. Other creative and innovative design techniques and approaches may be considered in order to achieve the intended objectives of the listed guidelines. Guidelines using the words “encouraged” or “discouraged” are desirable or undesirable but are not mandatory.

RELATIONSHIP BETWEEN DOCUMENTS
These checklists have been provided as a reference to be used in conjunction with the text of the City’s existing discretionary Design Guidelines. It is not meant to replace a full reading of the Guidelines text. In such cases where multiple sets of guidelines apply, the respective guidelines are viewed as “layers,” where the most specific guidelines – in the unlikely event of a conflict – would take precedent.
DESIGN GUIDELINES CHECKLIST

HILLSIDE HOUSING DEVELOPMENT. Use these guidelines on single-family residences located in the Hillside Design District or on other lots over 20% slope to ensure the proposed development will be appropriate to the site and the neighborhood. Check all that apply.

A. Natural Surroundings

Identify any techniques used that blend the house into its natural surroundings.

1. Balance stepping the building up or down the hill with avoiding excessive spill down.
2. Balance setting the building into the hillside with minimizing grading.
3. Avoid large continuous paved areas. Paved areas should be broken up by using colored or textured materials.
4. Natural earth tone colors that blend with the surrounding topography and vegetation are encouraged.
5. Fit in with hillside topography and background.
6. Avoid interrupting natural ridgelines and skylines. Set the house below these.
7. Use landscaping to blend the structure with the environment. Refer to the SFDB Guidelines, Part II: Landscaping for tips on blending landscaping with the surrounding natural terrain.
8. Use materials and colors to reduce the apparent bulk.
9. Minimize exposed foundations and undersides of structures (buildings or decks).
10. Avoid these design mistakes which raise both aesthetic and fire safety concerns:
 • Exposed underfloor areas
 • Large downhill cantilevers
 • Tall support columns for overhanging areas
11. To plan for a fire safe landscaping and building design, follow the City’s High Fire Hazard Landscape Standards and refer to the SFDB Guidelines, Part II: Landscaping High Fire Hazard Landscape Design.

B. Height and Proportions

Identify any techniques used to ensure height is proportion to the house and to the lot area.

1. Set back higher portions of the structure to reduce the appearance of height.
2. Vary height of building elements.
3. Minimize areas of maximum height.
4. Avoid using designs intended for flat lots on the hillsides.
5. Structures should have a modest “apparent height” (lowest point of contact with grade to highest point of building dimension).
B. Height and Proportions

6. Homes with an apparent height less than 30' are preferable. Design review boards will carefully consider appropriateness of homes exceeding an apparent height of 30'.

7. Although the Municipal Code height limit is 30’ in single family residential zones, appropriate hillside project proposals usually have a height of 25’ or less, especially where the slope is less than 25%.

8. Retaining walls which create a grade higher than natural grade underneath a residence contribute to a structure’s apparent height.

9. Homes with a total run of less than 60’ in horizontal distance for combined steps are preferred.

10. More spill-down is appropriate on very steep lots to minimize grading than would be appropriate on moderately steep or gently sloping lots.

C. Grading

Identify any techniques used to limit the amount of grading.

1. Carefully plan your project to minimize grading both underneath the main building footprint and on the entire site. Most reasonably sized development projects should be able to achieve a project program with less than 250 cubic yards of grading on a property. Only rarely do projects need to approach 500 cubic yards of grading, not including grading under the building footprint, to achieve reasonable development of a property.

2. Preserve slopes greater than 30% by avoiding grading and clearing.

3. Avoid visual scarring.

4. Retaining walls should be incorporated under the house.

5. Minimize the visual impact of grading by doing most of the cut under the buildings.

6. Attempt to balance cut and fill on site, while recognizing that export may be necessary to preserve the natural topography.

7. Excess materials may be used elsewhere on the site if the grading results in minimum changes to the natural contours and will not be distinguished from surroundings within a short period of time.

8. Man-made contours should mimic natural contours.

9. Avoid hiding downhill foundations with fill.

10. Set house on the site so that the length of the driveway is minimized.

11. Minimize the visibility of driveway cuts from the property.

12. Use planting, wall materials, and colors to minimize visual effects of driveway cuts.

13. Design driveway slope with the natural topography.
D. Architectural Features

Identify any techniques used to break up unacceptable massing.

1. Vary rooflines.
2. Use a combination of vertical and horizontal elements.
3. Use doors and windows to create patterns.
4. Use step backs and projections in the design to create interest.
5. Tall elements should be placed toward the center of the uphill portion of the building.

E. Neighborhood Compatibility

Identify any techniques used to fit in with the existing neighborhood.

1. Be compatible with neighboring houses in terms of proportion, size, bulk, height, setbacks.
2. Review the Compatibility Section of the Single Family Residence Design Guidelines, including Architectural Style and General Compatibility Principles.
3. Avoid crowding or overwhelming neighboring residences.
5. Minimize creation of a vertical canyon effect between houses. When a two-story house is proposed adjacent to one-story houses, the space between them is important. The space between houses should increase as wall height increases.
6. In hillside areas, special consideration is required for placement of decks and outdoor courtyard placement. Depending on topography, these features have the potential to greatly affect downhill neighbors’ privacy and noise levels. Often, keeping decks and courtyards within the Municipal Code setbacks listed for a zone district, even when not required, can help to maintain good neighbor relations.
7. Place outdoor fireplaces and chimneys in a location that will not impact neighbors’ views, privacy, noise or air quality.

F. Retaining Walls

Identify any techniques used to design retaining walls to blend into their surroundings

1. Minimize length of solid fences, landscape walls, and retaining walls on hillsides. Walls should not exceed 50’ in length.
2. Minimize fence and wall heights. An 8’ wall may be acceptable if the materials are aesthetically pleasing (for example, stone), but a 6’ height limit is more appropriate for materials such as stucco.
3. Long, continuous walls may be acceptable if they undulate, are broken up by buttresses or pilasters, and are of appropriate natural materials such as stone or adobe. Plaster walls may be acceptable at the SFDB’s discretion.
4. Use horizontal lines and proportions to reduce perception of height and bulk.
5. Follow topography with fence and wall design.
F. Retaining Walls

6. Use earth tone colors that tend to blend with the surrounding natural colors of the hillsides and minimize visual effects. Avoid use of colors contrasting with the surrounding natural terrain such as bright white walls or large areas of bright non-native flowers.

7. Use stone or other native, natural materials.

8. Integrate vegetation and landscaping with fence and wall design.

9. Avoid locating retaining walls near existing walls.

10. Retaining walls with fill behind them can be particularly visually disruptive.

11. Stepped or terraced retaining walls, with planting in between, may be an acceptable alternative to tall retaining walls.

12. The minimum distance between two terraced retaining walls should be at least the average height of the two walls.

13. The following are suggested maximum heights for fill slope retaining wall systems:
 - 6 feet suggested maximum exposure for individual retaining walls
 - 12 feet suggested maximum combined exposed retaining wall faces