ADOPTED BY SANTA BARBARA CITY COUNCIL IN 2007

Available at the Community Development Department,
630 Garden Street, Santa Barbara, California, (805) 564-5470 or www.SantaBarbaraCA.gov

2007 CITY COUNCIL, 2007
Marty Blum, Mayor
Brian Barnwell
Das Williams
Helene Schneider
Iya Falcone
Grant House
Roger Horton

PLANNING COMMISSION, 2007
Charmaine Jacobs
George C. Myers
John C. Jostes
Stella Larson
Bruce Bartlett
Addison Thompson
Harwood A. White, Jr.

STEERING COMMITTEE
Allied Neighborhood Association:
Dianne Channing, Chair & Joe Guzzardi
City Council: Helene Schneider & Brian Barnwell
Planning Commission: Charmaine Jacobs & Bill Mahan
Architectural Board of Review: Richard Six & Bruce Bartlett
Historic Landmarks Commission: Vadim Hsu

HISTORIC LANDMARKS COMMISSION, 2007
William R. La Voie
Louise Boucher
Steve Hausz
Fermina B. Murray
Susette Naylor
H. Alexander Pujo
Robert Adams
Donald Sharpe

ARCHITECTURAL BOARD OF REVIEW, 2007
Mark Wienke
Chris Manson-Hing
Jim Blakeley
Gary Mosel
Randall Mudge
Dawn Sherry
Clay Aurell

SINGLE FAMILY DESIGN BOARD, 2010 UPDATE
Paul R. Zink
Glen Deisler
William Mahan
Gary Mosel
Berni Bernstein
Erin Carroll
Denise Woolery

PROJECT STAFF
Paul Casey, Community Development Director
Bettie Weiss, City Planner
Jaime Limón, Design Review Supervising Planner
Heather Baker, Project Planner
Jason Smart, Planning Technician
Tony Boughman, Planning Technician (2009 Update)

GRAPHIC DESIGN, PHOTOS & ILLUSTRATIONS
Alison Grube & Erin Dixon, Graphic Design
Paul Poirier & Michael David Architects, Illustrations
Bill Mahan, Illustrations
Linda Jaquez & Kodiak Greenwood, Photos
REFERENCES/ACKNOWLEDGEMENTS

City of Carpinteria, California: Residential Design Guidelines
City of Del Mar, California
City of Los Altos, California: Single Family Residential Design Guidelines, New Homes and Remodels
City of Pacific Grove, California: Architectural Review Guidelines
City of Palo Alto, California: Single Family Individual Review Guidelines
City of Rancho Palos Verdes, California: Neighborhood Compatibility Handbook
City of Redondo Beach, California: Residential Design Guidelines
City of San Jose, California
City of San Luis Obispo, California: Community Design Guidelines
City of San Mateo, California
City of Sunnyvale, California
City of Toronto, Canada: Toronto Bike Plan, Chapter 9: Bicycle Parking
City of Ventura, California
Council for Excellence in Government: Tips and Tricks for Managing Conflict with Comfort
County of San Luis Obispo, California: Design Guidelines
County of Santa Barbara, California: Montecito Architectural Guidelines and Development Standards, Eastern Goleta Valley Residential Design Guidelines
League of American Bicyclists: Better Bicycling Fact Sheet: Bicycle Parking and Storage
Mahan, Bill: A Comparative Analysis of Three-Story Buildings
Rhode, Helga, Pys.D: Dealing with Conflict and Confrontation
Susanka, Sarah: Creating the Not So Big House, Insights and Ideas for the New American Home
Susanka, Sarah: The Not So Big House, A Blueprint for the Way We Really Live
Town of Palm Beach, Florida: Draft Design Guidelines
Town of Tiburon, California: Design Guidelines for Hillside Dwellings
Table of Contents

Introduction
Explains the background, purpose, and objectives of these guidelines.

- Introduction .. i
- Neighborhood Compatibility .. i
- Hillside Neighborhoods .. i
- Sustainability .. ii
- Design Review .. ii
- Purpose .. ii

A Guide to the Design Review Process
Describes what is reviewed and what is exempt and includes a flow chart of the design review process.

- Projects That Require Design Review .. 1-D
- Design Review Process Flow Chart .. 2-D
- Design Review Submittal Requirements Summary 3-D
- Neighborhood Preservation Ordinance Findings 5-D
- Additional Findings .. 6-D

Site Planning and Structure Placement
Describes important aspects to consider when choosing a site location for a home on a lot.

1) Environmental Setting and Landscaping ... 7-SP
2) Neighborhood Context .. 7-SP
3) Solar Design ... 8-SP
4) Permeability ... 10-SP
5) Parking Aesthetics .. 12-SP

Compatibility Guidelines
Describes concepts and guidelines important in achieving project compatibility in a neighborhood.

- 6) “Neighborhood” ... 15-C
- 7) Volume, Bulk, Massing, and Scale ... 17-C
- 8) Floor to Lot Area Ratios (FAR) ... 21-C
- 9) Height .. 26-C
- 10) Façade Articulation ... 27-C
- 11) Architectural Style ... 28-C
- 12) Openings ... 30-C
- 13) Entries ... 31-C
- 14) Roof Design ... 32-C
- 15) Roof Materials ... 34-C
- 16) Exterior Materials and Colors ... 35-C
- 17) Fences, Walls, and Hedges ... 36-C
- 18) Partial Basement Design ... 37-C

Two-Story Design Concepts
Provides example illustrations of two-story design concepts.

- .. 39-TS
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HILLSIDE HOUSING DESIGN GUIDELINES</td>
<td></td>
</tr>
<tr>
<td>Describes additional special techniques to be used when designing your house (or addition) within the Hillside Design District.</td>
<td></td>
</tr>
<tr>
<td>Hillside Design District Map</td>
<td>45-H</td>
</tr>
<tr>
<td>27) Natural Surroundings</td>
<td>49-H</td>
</tr>
<tr>
<td>28) Height and Proportions</td>
<td>52-H</td>
</tr>
<tr>
<td>29) Apparent Height</td>
<td>53-H</td>
</tr>
<tr>
<td>30) Grading</td>
<td>58-H</td>
</tr>
<tr>
<td>31) Grading for Driveways</td>
<td>59-H</td>
</tr>
<tr>
<td>32) Architectural Features</td>
<td>60-H</td>
</tr>
<tr>
<td>33) Neighborhood Compatibility</td>
<td>61-H</td>
</tr>
<tr>
<td>34) Decks and Courtyards</td>
<td>61-H</td>
</tr>
<tr>
<td>35) Retaining Walls</td>
<td>62-H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOOD NEIGHBOR GUIDELINES & TIPS</td>
<td></td>
</tr>
<tr>
<td>Describes ideas for maintaining good relations with your neighbors when you are proposing to build a new house or add to your existing house.</td>
<td></td>
</tr>
<tr>
<td>Before Completing Your Design</td>
<td>67-N</td>
</tr>
<tr>
<td>36) Privacy</td>
<td>68-N</td>
</tr>
<tr>
<td>37) Landscaping</td>
<td>75-N</td>
</tr>
<tr>
<td>38) Noise</td>
<td>75-N</td>
</tr>
<tr>
<td>39) Lighting</td>
<td>75-N</td>
</tr>
<tr>
<td>Tips for Considering Neighbors’ Views</td>
<td>78-N</td>
</tr>
<tr>
<td>Tips for Minimizing Construction Impacts</td>
<td>79-N</td>
</tr>
<tr>
<td>Tips for Managing Conflict with Comfort</td>
<td>82-N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLEMENTAL INFORMATION</td>
<td></td>
</tr>
<tr>
<td>Includes additional information useful in planning a single family home project.</td>
<td></td>
</tr>
<tr>
<td>Sample Master Application</td>
<td>87-SI</td>
</tr>
<tr>
<td>Sample Resubmittal Cover Sheet</td>
<td>88-SI</td>
</tr>
<tr>
<td>Residential Zoning Requirements</td>
<td>89-SI</td>
</tr>
<tr>
<td>Setbacks and Required Yards</td>
<td>90-SI</td>
</tr>
<tr>
<td>Tree Removal Requirements</td>
<td>91-SI</td>
</tr>
<tr>
<td>Fences, Walls, and Hedges</td>
<td>93-SI</td>
</tr>
<tr>
<td>Measuring Height Limits</td>
<td>95-SI</td>
</tr>
<tr>
<td>Solar Access Height Limitations</td>
<td>96-SI</td>
</tr>
<tr>
<td>Calculating Slopes</td>
<td>97-SI</td>
</tr>
<tr>
<td>Recycling and Trash Space Allocation</td>
<td>98-SI</td>
</tr>
<tr>
<td>Bicycle Parking Tips</td>
<td>99-SI</td>
</tr>
<tr>
<td>Visualizing Grading</td>
<td>100-SI</td>
</tr>
<tr>
<td>Glossary of Terms</td>
<td>102-SI</td>
</tr>
<tr>
<td>Suggested Reading and List of Other City Design Guidelines</td>
<td>109-SI</td>
</tr>
</tbody>
</table>
Introduction
INTRODUCTION

According to the City of Santa Barbara General Plan, “Santa Barbara has, as its primary… [goal], the provision of a particularly desirable living environment.” Single family homes have long contributed to the character of many neighborhoods in the City. Home designs which achieve the following contribute to a desirable living environment:

• compatible with the surrounding neighborhood
• preserve the City’s visual resources
• promote long-term sustainability

NEIGHBORHOOD COMPATIBILITY

In recent decades, changes in the various neighborhoods throughout the City have raised quality-of-life concerns. Homes are built or remodeled in order to suit the changing needs and lifestyles of new and existing residents. As a result, neighborhood character gradually changes over time. When a change is made in an established neighborhood, it is essential to properly balance that change with a respect for the design features and characteristics of surrounding properties. Homes are more likely to be compatible when their volume and bulk are at an appropriate scale with their neighbors. This is the concept of neighborhood compatibility. New and remodeled houses can maintain a desirable living environment when they:

• have an appropriate volume, bulk, massing and scale
• have a size that is not significantly larger than the immediate neighborhood
• use materials and designs that are compatible with their surroundings
• are sited such that they do not block light and views for other existing homes
• minimize privacy impacts to surrounding properties

HILLSIDE NEIGHBORHOODS

The City’s hillsides are a unique resource and pose additional design considerations. The General Plan Conservation Element states:

“Hillside developments provide vistas for residents who inhabit those structures. Yet, residential developments render hillsides less natural as topography and vegetation are modified.”

Appropriately designed residential development in hillside areas can avoid threats to visual resources recognized by the Conservation Element, including:

• excessive grading
• views blocked by new structures or overly tall planted trees and hedges
• ridgeline development
• the loss of important trees

Applicants for hillside development projects need to follow the Compatibility, Two-Story Design Guidelines (if applicable) and Good Neighbor Guidelines, as well as the Hillside Design Guidelines.
SUSTAINABILITY

Good design can help ensure that meeting the needs of the current generation does not compromise the ability of future generations to meet their needs. This is the “sustainability” concept. It is important that neighborhoods change in a way that promotes the long-term economic, environmental and social sustainability of the City. Homes help contribute to sustainability when they are at a size that is compatible with the surrounding neighborhood. Smaller, well-designed homes are often more sustainable because they tend to:

- require fewer natural resources in construction
- consume less electricity and natural gas
- require less grading
- provide more affordable housing opportunities

For more information, see the City’s Sustainable Santa Barbara Builder’s Packet, available at 630 Garden Street.

DESIGN REVIEW

The City Charter gives direction to consider “…the preservation and protection as nearly as practicable of the natural charm and beauty of the area in which the City is located and the historical style, qualities and characteristics of the buildings, structures and architectural features associated with and established by its long, illustrious and distinguished past.” The Single Family Design Board (SFDB) Guidelines ensure high design standards are maintained in development and construction.

Within the landmark districts, design review is handled primarily by the Historic Landmarks Commission (HLC), which reviews designs for consistency with the architectural styles allowed within the districts. See the Lower Riviera Special Design District or El Pueblo Viejo District Design Guidelines for more information.

City Staff reviews designs for adherence to the City’s Municipal Code and relevant guidelines. Staff forwards designs to the SFDB or HLC for further review if required by the Municipal Code.

PURPOSE

The Guidelines are primarily a guide for the homeowner, architect, designer, developer and builder who are designing new single family homes or changing existing houses. These Guidelines are intended to help design homes that are compatible with the surrounding neighborhood, preserve visual resources and promote sustainability. The Guidelines help homeowners design projects that are compatible in both size and design. While Floor to Lot Area Ratio (FAR) regulations inform homeowners of the maximum allowed home size, homes designed smaller than the maximum FAR can still be incompatible, depending on design. Therefore, design is just as important as size.

These Guidelines also provide a framework for the design review process and a foundation for public, City staff, SFDB, HLC, Planning Commission and City Council project evaluation. Whenever SFDB is referenced, the information generally applies to other hearing body reviews. These Guidelines are not meant to discourage unique and inventive design solutions. Rather, these guidelines serve as a tool to help decision makers determine if appropriate findings and approvals can be made for projects.
A Guide to the Design Review Process
A GUIDE TO THE DESIGN REVIEW PROCESS SUMMARY

- PROJECTS THAT REQUIRE DESIGN REVIEW
- DESIGN REVIEW PROCESS FLOW CHART
- DESIGN REVIEW SUBMITTAL CHECKLIST
- NEIGHBORHOOD PRESERVATION ORDINANCE FINDINGS
- OTHER FINDINGS
PROJECTS THAT REQUIRE DESIGN REVIEW

Following is a list of the general types of single family home projects which can be subject to Design Review. To view the source of the Design Review “triggers”, see the Municipal Code Neighborhood Preservation Ordinance (SBMC§22.69.020). For details regarding the Design Review process, see the SFDB Guidelines or HLC Rules and Procedures.

SPECIAL DISTRICTS

- Located in the Mission Area Special Design District (within 1,000 ft. of EPV II) (§22.69.020.B.1)
- New development only in the Lower Riviera Survey Area – Bungalow District (§22.69.070.E). Existing development is reviewed on a case-by-case basis (§22.69.020.B.1 and §22.69.070)
- Located in the Hillside Design District AND the average slope of the lot or building site is 20% or greater; (§22.69.020.B.2)
- Located in the Hillside Design District and on any slope, the replacement of an existing roof covering with a roof covering of different materials or colors (excluding “like for like” re-roof) (§22.69.020.B.2)

BUILDING HEIGHT AND FLOOR AREA

- If the building is taller than one story or taller than 17’ in height (measured from natural or finished grade, whichever is lower). (§22.69.020.C.1, .2 &.3)
 Exceptions:
 a. alteration on the first floor below 17' only
 b. proposed construction is one-story, under 17’ tall, and does not significantly alter a second floor (see illustration examples available at the public Planning and Zoning Counter).
 c. Any combination of a. or b., above.
- Net floor area of all stories of all buildings on the site (including garages and carports) will exceed 4,000 sq. ft. (§22.69.020.C.4).
- Modification to exceed a maximum floor area is required (§22.69.020.C.5)

PREVIOUS APPROVALS/CONSTRUCTION

- Design Review was previously required in the past two years (from Certificate of Occupancy); or if the cumulative scope of work from permits in the past two years will trigger review (§22.69.020.J)

WALLS AND BALCONIES

- Construct, alter, or add a deck or balcony on the second or higher floor (including roof decks) that will be greater than 3’ deep or 7’ wide (§22.69.020.C.6)
- Walls, fences, or gates 3.5’ or greater in height located in any portion of the front yard, excluding those along interior lot lines. (§22.69.020.C.8)
- Retaining walls anywhere on a site 6’ or greater in height (§22.69.020.C.7)
- Retaining walls located on a lot or building site with an average slope of 15% or greater; (§22.69.020.G.1)
- Retaining walls located on a lot adjacent to or on a lot that contains an ocean bluff; (§22.69.020.G.2)
- Multiple retaining walls with a combined height of 6’, that are not separated by either a building or 10’ of horizontal distance (§22.69.020.G.3)

OTHER

- Installation of a manufactured home, mobile home, or factory built home (§22.69.020.C.9)
- Relocation in whole or in part of a single family residential unit (§22.69.020.C.10)
- Subdivision grading plans – in single family zones only (§22.69.020.D)
- Grading on a vacant lot in a single family zone (alone or in combination with other work). (§22.69.020.E)
- Grading outside the main building footprint is proposed of more than 50 cubic yards in the Hillside Design District or more than 250 cubic yards in other areas. (§22.69.020.C.11)
- Vegetation removal permit (§22.69.020.F)
- Parking exception for two uncovered spaces is requested (SBMC 28.90.100.G.1.c)
Step 1: Application
Submit Master Application & other required information

Step 2: Staff Review
- Completeness
- Compliance with Zoning & other City requirements
- Preliminary Environmental Review
- Appropriate level of Design Review determined

Step 2A: Administrative Staff Review
- A simple review process available for some minor projects
- After final staff approval is granted and appeal period ends, the project proceeds to Step 6: Building Permit

Step 3: Mailed Noticing (if required)

Step 4A: Consent Calendar Review
1 - Consent Calendar Hearing
2 - Environmental Determination Completed
3 - Complete other Discretionary Review (if required)
4 - Preliminary and/or Final Review
5 - Decision Ratified by Full Board

Step 4B: Full Board Review
1 - Conceptual Review
2 - Environmental Determination Completed
3 - Complete other Discretionary Review (if required)
4 - Preliminary Review
5 - In-progress Review (if necessary)
6 - Final Review

Step 5: Appeals
If an SFDB or HLC preliminary project decision is appealed based on inconsistencies with applicable City Guidelines or NPO findings - City Council hearing held.

Step 6: Building Permit
If approved, submit Master Application and final working drawings to Building and Safety.
Design Review Submittal Requirements Summary

(See Single Family Design Board (SFDB) Guidelines & Planning and Zoning Counter Design Review submittal requirements handouts for details. Go to 630 Garden Street for handouts, staff advice, submittals and fee payments.)

<table>
<thead>
<tr>
<th>Single Family Design Board & Historic Landmarks Commission Submittal Requirements Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPT REVIEW</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PROJECT DESIGN APPROVAL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FINAL & CONSENT</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

See submittal requirements for over 85% of maximum FAR or over maximum FAR projects listed on page 4-D. See Planning & Zoning Counter handouts for most current and more detailed requirements.
ADDITIONAL SUBMITTAL REQUIREMENTS

Projects 85% or Less Than Maximum Square Footage

These projects are subject to standard application and processing requirements. Applicants are encouraged to design homes under 85% of the maximum square footage for their lot size whenever possible to help ensure neighborhood compatibility. (See pages 21-C - 25-C for more information).

Projects Over 85% of a Maximum Square Footage

These projects are more likely to pose neighborhood compatibility issues and are generally discouraged. However, careful design and review can sometimes produce projects that are still compatible with the surrounding neighborhood. Due to the special nature of these larger, potentially incompatible projects, special additional processing requirements apply for lots under 15,000 square feet.*

- 20 closest homes County Assessor’s report copy
- Panoramic streetscape photo presentation
- Story poles likely to be required
- Street elevation showing building outline silhouettes
- Landscape plans
- Perspective drawing or model

Applications for projects over 85% of a maximum square footage on lots under 15,000 square feet require a Planning Commission modification request if any of the following apply:

- Average property or building site slope is greater than 30%; or
- Height is greater than 25'; or
- In the Hillside Design District & site grading outside the main building footprint is greater than 500 cubic yards.

Projects Over a Maximum Square Footage

Projects proposing square footage over the maximum specified for a property are strongly discouraged in most cases. However, there may be some project sites with special physical features, which when combined with exceptional design, can accommodate an over maximum home compatible with the neighborhood. A Planning Commission modification is required for over maximum square footage proposals. Also, a super majority (five out of seven) of the SFDB members must vote in support of the project approval. The following “findings” must be made for approval of projects proposing to exceed a maximum required square footage.

- The subject lot exhibits a physical condition (such as the location, surroundings, topography, or the size of the lot relative to the other lots in the neighborhood) that does not generally exist on the other lots in the neighborhood
- The physical condition of the lot allows the project to be compatible with existing development within the neighborhood that complies with the net floor area standard

Projects proposing over 100% of a required maximum square footage must submit the following items in addition to normal submittal requirements:

- 20 closest homes analysis of current available data

* The SFDB may require some project proposals on properties over 15,000 sq. ft. to include this information if needed.
Submittal Requirements Cont.

- Panoramic streetscape photo presentation which includes a simulation of the proposed project superimposed on the streetscape panoramic photographs
- Full level of story poles
- Street elevation showing building outline silhouettes, including window and door details
- Landscape plans
- Model or three-dimensional computer graphic
- A neighbor workshop is required prior to the first SFDB hearing

See page 21-C for information regarding legal non-conforming as to maximum floor area properties with a project proposal of up to 100 additional square feet.

Neighborhood Preservation Ordinance Findings

All Neighborhood Preservation Ordinance (NPO) single family projects subject to review and approval by the Single Family Design Board or Historic Landmarks Commission must be consistent with the following set of findings.

General Required Findings

(Apply to all NPO projects subject to Design Review.)

1. **Consistency & Appearance:** The proposed development will be consistent with the scenic character of the City and will enhance the appearance of the neighborhood.
2. **Compatibility:** The proposed development will be compatible with the neighborhood, and its size, bulk and scale will be appropriate to the site and neighborhood.
3. **Quality Architecture & Materials:** The development, including proposed structures and grading, is designed with quality architectural details and quality materials. Proposed materials and colors will maintain the natural appearance of the ridgeline or hillside.
4. **Trees:** The proposed project will not remove or significantly impact any designated Specimen, Historic and Landmark trees. Also, the proposed project, to the maximum extent feasible, preserves and protects healthy, non-invasive mature trees with a minimum trunk diameter of four inches (4”) measured four feet (4’) above natural grade. The project includes a plan to mitigate the impact of the removal of any healthy, non-invasive mature tree with a diameter of four inches (4”) or more at four feet (4’) above natural grade in compliance with applicable tree replacement ratios.
5. **Health, Safety and Welfare:** The public health, safety and welfare will be protected.
6. **Good Neighbor Guidelines:** The project generally complies with applicable privacy, landscaping, noise, and lighting Good Neighbor Guidelines.
7. **Public Views:** The development, including proposed structures and grading, will preserve any existing significant public scenic views of and from the hillside.
HILLSIDE FINDINGS
(Apply to all NPO projects in the Hillside Design District or on lots in other parts of the City with a slope of 15% or greater.)

1. **Appropriate Grading & Natural Topography Protection**: The development, including proposed structures and grading, is appropriate to the site, is designed to avoid visible scarring, and will not significantly modify the natural topography of the site or the natural appearance of any ridgeline or hillside.

2. **Appropriate Development Scale**: The development, including proposed structures and grading, will maintain a scale and form that blends with the hillside area by minimizing the visual appearance of structure(s) and the overall height of structure(s).

SPECIAL DESIGN DISTRICT GRADING AND VEGETATION REMOVAL PROJECTS REQUIRED FINDINGS
(Apply to all NPO projects in a Special Design District requiring a grading or vegetation removal permit.)

1. The proposed vegetation removal will not significantly increase siltation in or decrease the water quality of streams, drainages or water storage facilities to which the property drains; and

2. The proposed vegetation removal will not cause a substantial loss of southern oak woodland habitat; and

3. The proposed vegetation removal is in compliance with all applicable provisions of Chapter 22.10, Vegetation Removal, of the City Municipal Code.

PROJECTS PROPOSING SQUARE FOOTAGE EXCEEDING A REQUIRED MAXIMUM FAR
(Apply only where lot size is under 15,000 square feet in single family zones and either taller than 17’ in height or two or more stories.)

1. Not less than five (5) members of the Single Family Design Board or six (6) members of the Historic Landmarks Commission (on projects referred to the Commission pursuant to Section 22.69.030) have voted in support of the modification following a concept review of the project; and

2. The subject lot has a physical condition (such as the location, surroundings, topography, or the size of the lot relative to other lots in the neighborhood) that does not generally exist on other lots in the neighborhood; and

3. The physical condition of the lot allows the project to be compatible with existing development within the neighborhood that complies with the net floor area standard.
Site Planning and Structure Placement
SITE PLANNING STRUCTURE AND PLACEMENT

1. ENVIRONMENTAL SETTING & LANDSCAPING

Consider the environmental setting and appropriate landscaping in the site planning and structure placement process. p. 7-SP

2. NEIGHBORHOOD CONTEXT

Integrate structures and site plan with the neighborhood. p. 7-SP

3. SOLAR DESIGN

Design to maximize solar access and options for passive and active solar heating and cooling. p. 8-SP

4. PERMEABILITY

Maximize permeable surface areas. p. 10-SP

5. PARKING AESTHETICS

Minimize parking aesthetic impacts along the street. p. 12-SP

Note: As in all the sections of this document, illustrations may indicate a list of guidelines, which are exemplified by the illustration, in parenthesis immediately after captions.
SITE PLANNING AND STRUCTURE

One key element that defines visual character of an individual dwelling and a neighborhood is how a dwelling is located or placed on a site. A single building out of context with its site or neighboring dwellings can appear disruptive. Site design should reinforce the local context of the natural and built environment. When planning a site, consider the setting, opportunities for solar design, ways to maximize permeability, and ways to minimize parking aesthetic impacts.

1. ENVIRONMENTAL SETTING & LANDSCAPING

Consider the environmental setting and appropriate landscaping in the site planning and structure placement process.

1.1 Integrate structures and site plan with the environmental setting.

Structures are integrated with the setting when new dwellings and additions look as if they belong on the site, have been constructed to blend with the natural environment and natural land forms of the site, and are complementary to adjacent neighborhood structures. Projects adjacent to creeks should follow applicable “special area” landscape design guidelines for creeks, water courses and wetlands listed in the SFDB. Native plant preservation is important on some sites. Additionally, consider potential impacts of new and remodeled structures in the vicinity of historic resources identified by the City.

1.2 Comply with landscape standards, codes and guidelines.

Projects are required to comply with applicable city water wise standards and Storm Water Management Program components. Additionally, the SFDB Guidelines contain a chapter of Landscape Design Guidelines which all projects should comply with.

2. NEIGHBORHOOD CONTEXT

Integrate structures and site plan with the neighborhood.

Respect, complement or improve upon existing neighborhood patterns, such as:

- Distance from the street (sometimes greater than present minimum zoning regulations)
- Existing parking arrangement patterns
- If possible, consider private use and view areas of immediate neighbors (See Good Neighbor Guidelines and Tips)
3. **Solar Design**

Design to maximize options for passive and active solar heating and cooling.

Solar access refers to the potential to receive adequate sunlight in order for certain areas of the property to enjoy the benefit of sunlight. Access to sunlight is important for energy efficiency and landscaping, as well as for homes that use solar energy for space heating and cooling, water heating, electricity, and/or daylighting.

Generally, solar access can be compromised by structures or vegetation that cast excessive shadows for an extensive period. Solar access is protected in Santa Barbara by a Solar Ordinance (see details in Supplemental section). Where possible, orient building volumes and second stories away from the north, west, and east property lines when feasible to allow for the solar access of neighboring properties.

![Diagram showing solar access and shadow placement](image)

note: Shadow Height is not to scale.
Passive Solar Design

Buildings with passive solar building designs use the sun for free heating, cooling and lighting. Passive solar design includes carefully orienting building walls, windows and roof details on a site in response to sun patterns for energy conservation and a naturally more comfortable home environment. For more information about Passive Solar design principles, see the City of Santa Barbara’s “Passive Solar Building Design Guidelines and Recognition Program.”

Generous roof overhangs provide a quality appearance for structures (when appropriate to the structure) and can assist with seasonal heating and cooling. However, overly extended overhangs can create a bulky appearing structure.

Active Solar Design

Solar energy systems such as photovoltaic electricity-producing solar panels and hot water solar thermal systems are encouraged as an environmentally superior alternative to energy sources such as fossil fuels. Active solar energy solar systems can also save homeowners money over time. Even if a homeowner does not choose to include an active solar energy system in a project design when a new home or addition is first planned, simple considerations can make installing such systems later much easier and more attractive. Consider leaving a 300 square-foot rectangular area of roof space free of mechanical equipment and vents facing south, west or east. The area could then easily accommodate a regularly shaped, sufficiently sized solar energy system in the future. Or, consider a parapet-style roof system which could hide a future solar energy system.

For more information about designing solar energy systems to be both highly efficient and compatible with a neighborhood, please see the City’s “Solar Energy System Design Guidelines and Recognition Program,” available at 630 Garden Street.
4. **Permeability**

Maximize permeable areas.

Water on a site can either enter the ground through permeable surfaces or become “runoff” if water leaves the site quickly by travelling over non-permeable structures and paving. Santa Barbara neighborhoods have stormwater drainage to nearby creeks that flow to the ocean. As a result, management of stormwater runoff to existing water bodies is one of the most important environmental issues affecting site development. Stormwater runoff that contains non-point source pollution, such as pesticides and fertilizers from lawns, heavy metals and oils from driveways, and pet waste pose a significant threat to the water quality of downstream beaches and streams. Non-stormwater runoff from landscape irrigation, pools, spas, and outdoor showers should also be contained or minimized to protect water quality. Implementing best management practices for any grading activities is also very important to protect creeks and ocean water quality.
Bioswales, infiltration areas, vegetated filter strips, porous paving, and rainwater cisterns should be incorporated into site design to allow filtration of sediment and pollutants, to slow down potentially damaging flows, and to prevent runoff from entering existing wetlands and creeks during storms. Such facilities should be natural, rather than mechanical, in character and form. These measures are very attractive, low tech, low cost, and low maintenance and provide significant benefits to the environment. The City has adopted a Storm Water Management Program that strongly supports retaining all runoff on the property. Also refer to the SFDB Design Guidelines, Part II: Landscaping.

4.1 Minimize stormwater and non-stormwater runoff from the site to the street or neighboring properties.

4.2 Site design should maximize water permeability by reducing paved areas (hardscape), use of permeable paving materials, and preserving open space drainage ways when feasible.

4.3 Avoid large continuous paved areas. When structures are proposed to total over 2,500 square feet on the ground floor, minimizing impermeable surfaces on the lot becomes especially important.

4.4 Consider use of permeable paving materials such as ungrouted brick pavers or interlocking paving systems in which grass can be grown.

4.5 Consider conveying stormwater from building roofs to an on-site drainage system, such as french drains, detention basins, bioswales, or into planted areas.

Driveway Permeability

Wide driveways create more paved area, reducing the front yard landscaped area and increasing storm water runoff. The width of paved driveways as well as their curb cuts should be as narrow as possible, and in no case wider than the predominant pattern of the neighborhood and minimum City Transportation Division standards.

4.6 Minimize driveway and curb-cut widths.

4.7 Minimize paved areas, especially in the front yard which should be limited to pedestrian pathways and driveways sized at the minimum width required for access to a garage or other required parking spaces.

4.8 Consider a “ribbon driveway” to minimize pavement and add permeability.

Ribbon driveway example on Santa Barbara street. (4.8) (10’-wide driveway with 2 1/2” wide “ribbon of planting)
5. Parking Aesthetics

Minimize parking aesthetic impacts along the street.

The location and access to garages, carports or other parking areas can have a great effect on the appearance of a neighborhood.

Driveway Aesthetics
5.1 Consider textured/patterned driveways to complement architecture and minimize driveway visual impacts.

Garage or Carport Aesthetics
5.2 For new construction, garages should not be the predominant feature of the front elevation.
5.3 Design solutions which locate the garage behind the main residence are preferred, where feasible.
5.4 Garages appear more appropriate on the ground floor of multiple story buildings.
5.5 Underground parking solutions are usually inappropriate along the street front on flat lots.

A smaller garage or carport can leave more square footage for main dwelling unit habitable areas. The on-site parking Zoning Ordinance flexibility provision can help.

5.6 Creative parking solutions that use existing covered parking structures are encouraged. For example, consider one covered and one uncovered parking space if one garage space exists and a new uncovered space can fit behind the main residence.
Uncovered Parking Aesthetics

Some projects may have uncovered parking for guests in addition to the two covered parking spaces required. The Zoning Ordinance also allows uncovered parking as an exception to the two covered parking space requirement in some cases.

5.7 Uncovered parking should be screened from the street and neighbors and placed behind the main house structure when possible. Any screening gates should be compatible with the neighborhood.

5.8 Uncovered parking in front of a house should be screened from the street by topography, structures or landscaping.

5.9 Uncovered parking should be delineated with plant or hardscape landscaping.

5.10 Use appropriate landscape planting to ensure adequate shading of the space.

5.11 On flat sites, new paving for uncovered spaces should be permeable.

Carport Design Guidelines

5.12 Aesthetically, garages are usually preferred over carports.

5.13 Construction over carports is strongly discouraged.

5.14 Carports should be designed with high quality materials, compatible with the main structure. For example, roofing design, colors, materials and supporting posts should be similar to the main house.

5.15 A sloped carport roof is preferred over a flat carport roof if it is compatible with the main house.

5.16 Support posts for a carport should appear substantial and be decoratively finished in a style matching the main residence. Thin metal poles are not an acceptable solution for a carport design.

5.17 Pedestrian pathways connecting the carport with the main residence should be provided.

5.18 Landscape planting areas may be required to be located adjacent to carports to provide visual relief from paved areas, if readily feasible.

5.19 Where there is no garage on a property, at least 200 cubic feet of aesthetically integrated lockable exterior storage should be provided.
This page left intentionally blank.
Compatibility Guidelines
Compatibility Guidelines Summary

6. Neighborhood
Design a project to be compatible with the immediate neighborhood, and carefully consider the neighborhood study area for a project. p. 15-C

7. Volume, Bulk, Massing, and Scale
Design structures to be compatible with neighboring houses in terms of volume, bulk, massing, and scale. p. 17-C

8. Floor to Lot Area Ratio (FAR)
Strive for a project which falls in the “less than 85% of maximum FAR” range for the project lot size. p. 21C

9. Height
Design building heights to be compatible with the neighborhood. p. 26-C

10. Façade Articulation
Use façade articulation to create appropriate scale and add visual interest. p. 27-C

11. Architectural Style
Choose a style compatible with the surrounding neighborhood and use architectural features to create a consistent architectural style. p. 28-C

12. Openings
Use openings such as doors and windows in a manner compatible with the neighborhood. p. 30-C

13. Entries
Main entries should be visible from the street and contribute towards a friendly neighborhood experience. p. 31-C

14. Roof Design
Carefully plan roof forms on a home for a well-designed structure compatible with the neighborhood. p. 32-C

15. Roof Materials
Roofing material and color should be consistent with the building architectural style. Eave closures, a.k.a. bird stops, if any are proposed, shall be mortared with natural cement. p. 34-C

16. Exterior Materials and Colors
Exterior materials and colors should complement the style of the house and neighborhood, as well as blend with surrounding natural features when viewed from a distance. p. 35-C

17. Fences, Walls, and Hedges
Integrate fences, walls and hedges with structures and setting. p. 36-C

18. Partial Basement Design
Carefully design partial basements to not create a bulky appearance, or contribute to inappropriate apparent height. p. 37-C
COMPATIBILITY GUIDELINES

6. NEIGHBORHOOD

Design a project to be compatible with the immediate neighborhood, and carefully consider the neighborhood study area for a project.

People think of their “neighborhood” in different ways. There are large areas of the City sometimes referred to as neighborhoods. There are also smaller, immediate neighborhoods. The Neighborhood Preservation Ordinance requires homes to be “compatible with their neighborhood.” To help determine project compatibility with a neighborhood, the Single Family Design Board (SFDB) will generally refer to a “Neighborhood Study Area” defined below. A Neighborhood Study Area allows the SFDB to efficiently review homes for compatibility. Following are three levels of “neighborhood” recognized by the SFDB.

General Plan Neighborhood: Neighborhoods as delineated in the Land Use Element of the City’s General Plan (see next page).

Immediate Neighborhood: Generally, an area smaller than a General Plan neighborhood that has a combination of the following characteristics in common:

• Similar zoning
• Properties built as part of the same original subdivision
• Common access routes

• Walkable radius (15 minutes; usually quarter mile radius)
• Similar architectural styles
• Similar tree and landscaping patterns
• Main streets, bridges, or railroad corridors as a boundary

Also, it should be noted that highly visible properties, such as those in hillside areas, can have an impact beyond their immediate neighborhood.

Neighborhood Study Area: The twenty (20) closest lots to a proposed project (see example below). Additional lots may be considered to make a compatibility determination depending on the predominant streetscape, patterns of development, or parcel sizes.

Neighborhood Study Area: 20 Closest Homes Example
7. **Volume, Bulk, Massing and Scale**

Design structures to be compatible with neighboring houses in terms of volume, size, massing, scale and bulk.

Quantitative Definitions

Volume: The quantitative three-dimensional measurement of a structure’s height, width and depth combined.

Size: The quantitative two-dimensional measurement of a structure’s length and width combined (i.e. “square feet”).

Qualitative Definitions

Massing: The qualitative arrangement of a structure’s bulk, including relative openness and solidity.

Proportion: The quantitative relative sizes and dimensions of architectural elements and details, as they relate to each other and to the entire structure.

Scale: The qualitative proportional relationship of a structure and its architectural elements and details to human beings. [Note: To compare scale to other structures, use the words “compatibility” and “neighborhood”].

Bulk: The qualitative visual perception of the composition and shape of a structure’s massing. Bulk is affected by variations in height, setbacks and stepbacks of upper stories.

Volume vs. Bulk

Volume is a structure’s quantitative height, width and depth measurement. Bulk, on the other hand, is the qualitative, readily visible composition and perceived shape of the structure’s volume, i.e. the design of its architectural composition, shape and scale, including stepbacks and setbacks. For example, imagine the nine squares in Figures A through C are actually three-dimensional cubes. The nine squares in Figure B appear bulkier than Figure A even though Figure A is wider. Figure B also appears bulkier than Figure C, even though Figure C is both higher and wider than Figure B. *(See page 19-C for addtl. illustrations.)*

Scale vs. Proportion

Proportion describes how building parts relate to each other and to a whole structure, as measured by size and dimensions. Scale, on the other hand, is the relationship of a structure or its parts to a definite unit of measure. For most Santa Barbara Infill neighborhoods, the definite unit of measure is a human being’s height, i.e. “human scale.” A common problem with larger homes is that the architectural elements of a structure should be in proportion to the overall structure size. As a structure gets bigger, its elements such as doors, windows, archways, and towers may need to get bigger as well. As a result, human scale can be lost, leading to neighborhood incompatibility. Another point is that a human scale structure may still lack proportion between its elements. For example, even a small home may have windows or doors so different in size or shape relative to each other or to the home that they detract from the home’s appearance.

(Continued on page 19-C)
Volume: A Quantitative Measurement

The home above has significantly less measured volume than the home below.

Bulk: A Qualitative Visual Component

Although these homes have very similar square footages, the picture below may appear “bulkier,” in part because of the volume’s massing.
7. Volume, Bulk, Massing and Scale continued.

Visible front door entries, traditional porch features, decorative pedestrian gates, small and medium-sized windows, short fences, minimization of large “blank” architectural features (such as through the use of small garage doors or decorative garage doors) can help provide a sense of “human scale.”

Example Architectural Elements that Can Affect a Home’s “Scale”:

Windows: size, proportion, number, placement
Doors: single or double, height
Entrances: monumental height over 10’ or human scale
Garages: number of bays, type of door
Roof Slopes: towers, windows, dormers
Roof Styles: hip, gable, mansard, gambrel, flat
Roof Pitches: slope rise to run, e.g. 4:12
Columns: 1 story, 2 story, appropriate to style
Stairs: exterior stair quantity and widths
Pedestal Treatment: raised house or entrance
Blank Walls: major or minor part of structure faces

Door openings (areas containing the door, frame, side lights, fan windows, transom, and any recessed or significant feature associated with the door) designed for a human scale should not exceed a width of 8’ or a height of 12’.

This home relates well to human scale in part because of the appropriately sized and proportioned garage door, chimney and windows, in addition to elements such as the trellis on the upper story deck and modest front porch.

A home illustrating a “monumental scale,” usually inappropriate on small lots. In particular, the size and proportions of the entry stairs, columns, front door, porch, and the significant pedestal (raised house) reflect a monumental scale.
COMPATIBILITY GUIDELINES AND TECHNIQUES

VOLUME, BULK, MASSING AND SCALE ISSUES

Issues that the SFDB considers related to volume, mass, bulk, size and scale include the following:

- **Compatibility:** How compatible is the structure’s **volume, bulk, and scale** with the **volume, bulk, and scale** of the existing neighborhood homes and structures?

- **Floor to Lot Area Ratios:** Is a structure’s **size** appropriate for its lot size?

- **Second Story Decks:** Do wall elements, guardrails, furniture, or outdoor fireplaces contribute to the bulk or scale of the project?

- **Covered Porches, Loggias, and Covered Decks:** Do the covered porches, loggias, and/or covered decks enhance the building’s design, appearance, and function? Do they contribute to excessive mass, scale and bulk? Careful consideration should be given to projects that propose greater than 250 square feet of these areas, or when they are greater than 10% of the total net square footage of the structure. Because they include roof structures these areas might easily be enclosed in the future, possibly without design review. Future enclosure of existing covered areas may contribute to unacceptable size, bulk, and scale, eliminate a desirable architectural feature, or exceed FAR limits.

- **Garage Door Design and Placement:** Does the garage design minimize an appearance of **bulk**? Is the **scale** of the garage appropriate in comparison to the portion of the house visible from the street?

- **Second-Story Setbacks:** How does the second-story **volume** affect the streetscape or neighboring backyards? How **bulky** does a structure appear from the front or the back of a house because of how the **massing** of a building is composed?

- **Canyon Effect:** How close is the **volume** of a proposed second-story structure to the **volume** of any adjacent property’s existing second-story **volume**?

- **Wall Size:** How does a large expanse of wall contribute to a structure’s appearance of **bulk**? How can a structure’s **volume** be articulated consistent with an architectural style? Do building wall heights allow proportional **human scale** window and door details?

- **Roof Size:** How does a large expanse of roof contribute to a structure’s appearance of **bulk**? How can a structure’s **massing** be changed to avoid large expanses of roof?

- **Plate Height:** Do building plate heights allow for appropriately scaled wall, window and door details?
8. Floor to Lot Area Ratio (FAR)

Strive for a project which falls in the “less than 85% of maximum FAR” range for the project lot size.

\[
\text{FAR} = \frac{\text{Net Floor Area of all Site Structures}}{\text{Lot Area}}
\]

FAR is defined as the net square footage of a structure (or structures) divided by the net lot area. Net lot area excludes public road easements and public road rights-of-way.

FARs measure and limit a structure’s size based on lot size. FARs do not translate to an accurate measure of volume because plate heights and roof slopes for homes vary. However, they are a useful indication of a structure’s bulk relative to its site. Architectural features such as covered porches, loggias, and covered decks contribute to the mass and bulk of a building. While they are not included in the FAR, they are considered as part of the project’s mass and bulk. FARs provide general parameters of reasonable lot build-out according to lot size. FARs are often used to analyze a proposed project’s potential for neighborhood compatibility. Many communities have implemented FARs to better control size, bulk and scale of development. Ideally FARs can help prevent sudden dramatic incompatible neighborhood changes.

Applicants seeking SFDB or HLC approval are required to provide the proposed project’s floor to lot area ratio. Covered parking is included in the square footage calculations for FAR. For full details of what is included in FAR calculations, see the Project Statistics Form directions and square footage measurements table available at the Community Development Department website and office.
Example Average Existing Home

Illustration assumes:
- 60’ x 100’ lot

\[
\frac{1300 \text{ sq.ft. House}}{6,000 \text{ sq.ft. lot}} = .22 \text{ FAR}
\]

Example 85% of Maximum FAR

Illustration assumes:
- 60’ x 100’ lot

\[
\frac{2083 \text{ sq.ft. House}}{6,000 \text{ sq.ft. lot}} = .35 \text{ FAR}
\]

Example of Maximum FAR

Illustration assumes:
- 60’ x 100’ lot

\[
\frac{2700 \text{ sq.ft. House}}{6,000 \text{ sq.ft. lot}} = .45 \text{ FAR}
\]
APPlicability

Maximum FARs as requirements apply to a home taller than one story and a basement on lots smaller than 15,000 square feet in size in single-family zones. The maximum requirements also apply to homes taller than 17’ from natural or finished grade, whichever is lower on lots smaller than 15,000 square feet in single-family zones. Other properties, such as those 15,000 square foot lots or larger, or properties in multi-family zones, the FARs are applied as guidelines, rather than requirements.

The only way to exceed a required maximum FAR for most projects would be to request a “Planning Commission Modification” (see page 21-C for exception). However, for any project, no matter the location or height, a review board can request a smaller size if it is necessary in order for an approval to be made, for example to ensure the NPO Findings on page 5-D or other findings on page 6-D can be made.

Table 1: Formula Table

<table>
<thead>
<tr>
<th>Lot Size in Sq. Ft</th>
<th>Max. Home Size (in sq. ft.) including garage/carport</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤4000 sq. ft.</td>
<td>2200</td>
</tr>
<tr>
<td>4000 - 10000 sq. ft.</td>
<td>1200 + (0.25 x lot size)</td>
</tr>
<tr>
<td>10000 - 14999 sq. ft.</td>
<td>2500 + (0.125 x lot size)</td>
</tr>
<tr>
<td>15000 - 19999 sq. ft.</td>
<td>4180 + (0.013 x lot size)</td>
</tr>
<tr>
<td>≥ 20000 sq. ft.</td>
<td>4430 + (0.013 x lot size)</td>
</tr>
</tbody>
</table>

*Where zone district allows, see Municipal Code 28.87.160.4

**Garage/carport allowance does not need to be used only for garage/carport space for maximum square footage calculations. Max. sq. ft. can be distributed anywhere if consistent with Zoning regulations. Ex.: two-car covered parking minimum space requirement is 400 sq. ft. and 100 sq. ft. of remaining "allowance" could be used in the home instead of in the garage/carport.
To determine maximum allowed net square footage for a property, follow these steps:

1. Find the lot size range that includes the project lot size on the Formula Table, Table 1, see page 20-C.
2. Complete the formula using the lot size.
3. If you would like to check your work with some example FAR calculations, see Table 2 on page 20-C.

Projects Under 85% of Maximum FARs Are Encouraged

Project applications under 85% of the maximum FAR are generally easier to design, prepare, process and review because they are more likely to be compatible with the surrounding neighborhood than projects over 85% of the maximum FAR. Projects under 85% of the maximum FAR are generally subject to the simpler standard Design Review submittal requirements listed on page 3-D and described in Planning and Zoning Counter handouts. Design Review fees for projects under 85% of the maximum FAR are lower than fees for larger projects. Projects over 85% of the maximum FAR are more likely to pose neighborhood compatibility issues and are generally discouraged. However, careful design and review can sometimes produce projects that are still compatible with the surrounding neighborhood.

Due to the special nature of these larger, potentially incompatible projects, additional submittal information is required for these projects, described briefly on page 4-D and in detail in Planning and Zoning Counter handouts. Projects proposing square footage over the maximum FAR are strongly discouraged in most cases. However, there may be some project sites with special physical features, which when combined with exceptional design, can accommodate an over FAR maximum home compatible with the neighborhood. A Planning Commission modification and additional submittal requirements, described briefly on page 4-D and in detail in Planning and Zoning Counter handouts, are required for over maximum FAR proposals.

Applicability of FARs as Guidelines

Maximum FARs are applied as guidelines rather than requirements on lots that are 15,000 square feet or larger, or located in multi family or non-residential zones. Site and zoning variables might contribute to less reliability in the use of the 20 closest FAR Study.

Some situations may support higher FARs and projects that approach or exceed guideline FARs might not pose a problem and FAR compatibility may be less critical. Larger lots may allow more space between structures and in some cases may allow the project to be less visible to the public and to neighbors. In multi-family or non-residential zones where density of development is usually higher, single-family residential projects will likely have lower FARs than other types of development. These zones are likely to have more variety of development.

Other situations may support lower FARs. When the buildable portion of a site is small in relationship to the lot size, an FAR lower than what would normally be indicated for the lot size may be more appropriate. On some large lots not all of the lot
area may be developable due to steep slopes or creek or ocean bluff setbacks. These site constraints can push development on a site closer to the street, or closer to neighbors. In the Riviera there are examples where development on larger lots is clustered close together around cul-de-sacs or built close to the public streets. The configuration of the lot may reduce its developable area, for example flag lots. Corner lots or other lots with multiple street frontages have increased area within the front setbacks and development on these lots may be more visible. In situations like these, compatibility with neighboring FARs may be more pertinent. As a general rule, where the development is closer to property boundaries or more visible to the public and to neighbors, the proposed FAR should be reduced.

Properties Legal Non-Conforming as to a Required Maximum Size

Some “legal non-conforming as to FAR” properties can have a one-time addition of up to 100 square feet without a Planning Commission modification being required. Municipal Code 28.87.030.D.1.c allows such additions to reasonably accommodate minor changes in floor plans such as bathroom or closet additions to provide some flexibility for structures legal non-conforming as to a required maximum floor area (FAR standards) without the need for a Planning Commission modification. Consult the Municipal Code and City Staff for more information.

20 Closest FAR Study

When a project proposes to exceed 85% of a maximum required FAR, the applicant must provide a study of the FARs of the 20 closest lots. Using a geographic information system, the 20 closest lots are selected for the project’s neighborhood. This information is a tool used by the review board to assist in determining the compatibility of a project’s size within its neighborhood. Data on square footages and lot sizes are obtained from the County Assessor’s Office or from City records and plan archives. The information is assumed to be approximate due to variations in calculation methods and because many County records reflect original home sizes, but the data allows a general sense of the project’s size and FAR compatibility with nearby development. Factors to consider when using the 20 Closest FAR Study include:

- Variability of square footages in the neighborhood
- Variability of lot sizes and FARs in the neighborhood
- Site constraints; how much of the lot area is developable?
- Is the project near the average for the neighborhood?
- Is the project among the largest in the neighborhood?
- The project’s volume, bulk, scale, height, and massing relative to its square footage
- Closer proximity to neighboring structures and/or denser development in the neighborhood suggests closer adherence to the size of adjacent structures and to the average size of structures in the study.
9. **Height**

Design structure heights to be compatible with the neighborhood.

9.1 Building height should be in proportion to the style and size of the house and the lot area.

9.2 Avoid excessive building height. Although the Municipal Code allows up to 30’ in height in single family residential zones, the total “building box” allowed by the Ordinance should not be used to ensure compatible home designs. Homes taller than 25’ tall are usually incompatible in most single family neighborhoods.

9.3 Avoid tall plate heights (over ten feet) that unnecessarily add to the volume of a structure. Eight foot plate heights, the most common for single family homes, are encouraged. This concept is especially important for projects where basement stories are proposed.

9.4 Where appropriate to the architectural style, consider architectural features that indicate where a first story ends and a second story begins when the structure is viewed from the street. Examples of appropriate floor delineations for some architectural styles include banding or rooflines.

9.5 The height of a basement or cellar above grade is important in determining if all or part of the floor area of the basement or cellar will be counted towards floor area in relationship to maximum required square footage. The net floor area calculation for a basement or cellar is reduced by 50% if the vertical distance from grade to ceiling is four feet (4’) or less for at least one-half of the circumference of the exterior walls of the basement or cellar. If the vertical distance from grade to the ceiling is four feet (4’) or less for the entire circumference of the exterior walls of a basement or cellar, the area of the basement or cellar is excluded from the net floor area calculation. Note that basement square footage is still subject to other inclusive Zoning calculations even if excluded for maximum square footage calculations.

One way to make a two-story home more compatible with its single-story neighbors is to lower the eave line of the second-story roof. Lowering the eave line (i.e. bringing some portions of the roof down to the gutter or eave line of the first-story roof) also ties the two stories of a house together. Setting second stories back into the area of roof lines is often a solution to avoid impacting sunlight access, and it generally will lower the apparent height of the home. Lowering the eave line of the second-story roof can also reduce the apparent building volume, which may result in the scale of the building being more compatible with its neighborhood.

9.6 Where appropriate, bring some portions of the roof down to the gutter or eave line of the first-story roof to reduce the apparent volume of the building.
10. Façade Articulation

Use façade articulation to create appropriate scale and add visual interest.

Articulating the elements of the architecture creates interest and character. These design features can also have the positive effect of reducing the apparent building volume. The size of the architectural elements must each be in proportion to the total composition. Different styles of architecture will require different articulation. For example, (below) the elements of a Victorian house will often be painted in two or three colors. This will articulate porch columns, railings, window frames and sash from the volume of the house. The form of the house may also be articulated by building setbacks, overhangs, bay windows, gabled wings, porch elements, etc. On the other hand, a Spanish style design (bottom right) will usually be one color. The composition of its massing may be very simple and sculptural. Its elements are articulated by deep-set windows and doors, decorative iron and light fixtures, stucco grills, tile work and a judicious use of classical detail, all appropriately scaled.

10.1 If appropriate for the architectural style, encourage steps or offsets extending to grade where dimensions of a dwelling would otherwise appear too long.

10.2 Use projected or recessed architectural details (e.g. bays, windows, stringcourse) and changes in building materials or colors to visually break up building or walls.

10.3 Vary the height of building segments where appropriate to the design.

10.4 Consider articulating all sides of the dwelling where appropriate for the architectural style.
11. Architectural Style

Choose a style compatible with the surrounding neighborhood and use architectural features to create a consistent architectural style.

Do I Have to Build a Certain Architectural Style?

In most cases, architectural style is not restricted to the existing neighborhood style, but it should be compatible with the neighborhood and consistently designed in high quality for the entire exterior of the home and accessory structures on the site. A definite architectural style should be chosen for a project, for example, Bungalow, Mission, Victorian, Modern, etc. Structures and additions should present harmonious character. The SFDB considers architectural style differently in the following types of neighborhoods:

Most Neighborhoods. Most neighborhoods possess examples of distinctive architecture. In these neighborhoods, structures and additions should present a harmonious character with the particular surrounding neighborhood, avoiding a clashing or discordant appearance. Structure elements should be consistent with the best elements that distinguish the particular neighborhood where they are proposed.

These elements include, but are not limited to:

- size
- scale
- roof lines
- textures
- colors
- materials
- materials
- maintenance of the existing setback and patterns of development in the particular neighborhood is also important.

Neighborhoods Without Distinctive Architecture. In neighborhoods that do not possess examples of distinctive architecture (for example, some blocks of the West Mesa), structures and additions should be designed to lead the neighborhood toward designs that are harmonious with Santa Barbara’s distinctive built environment.

Neighborhoods with Architectural Style Requirements. Only homes in El Pueblo Viejo Landmarks District, the Brinkerhoff Landmark District or the Lower Riviera Special Design District have specific architectural style requirements. These Districts limit the range of allowed styles. For style requirements for these areas, see the applicable design guidelines referenced on the back cover of this document, available at 630 Garden Street.

Transitional Areas. When a project is within close proximity to a landmark district such as El Pueblo Viejo Landmark Districts (near downtown or the Mission) or it is near a City Landmark or Structure of Merit, consideration may be given to guidelines for a nearby district or to be compatible with the designated structure. In these areas, project design should promote a smooth transition from one usage area or architectural style to the next. Special attention to consistency with the City’s Urban Design Guidelines is recommended.
How Do I Create a Consistent Quality Architectural Style for My Home?

Additions to existing houses should be compatible with the existing architecture or the entire structure should be remodeled in a single architectural style. To ensure proposed architectural features are consistent with the proposed architectural style, refer to a style guide such as *The Field Guide of American Houses*, by McAlester, Virginia and Lee. (See Suggested Additional Reading List on page 103-S.) Architectural elements such as windows, doors, and cornices should create a rhythmic composition taking into consideration scale, style and architectural proportion. These elements should be detailed to provide modulation, visual interest and texture variations. Structure elements should be consistent with the best elements that distinguish the particular neighborhood in which they are proposed. These elements include, but are not limited to: volume, massing, scale, rooflines, colors, textures, and materials.

Architectural Features:

11.1 Features should enhance the architectural form and style of the house. For example, dormers, bay windows, porches, balconies, and entrance projections can add interest to the home if the size, design, colors and materials are compatible with the rest of the structure and the neighborhood.

Building Materials:

11.2 Architectural style expressed through building materials, colors, design, exterior treatment, roof articulation and overall design in construction should be of good quality and durable exterior materials. Typical architectural enhancements include:

- High quality construction and materials for exterior finishes
- Wood windows, recesses, articulation of openings, wood shutters, and ornamental ironwork
- Enhanced landscaping, paving and/or decking
- Heavy timber trellis or arbor structures
- Stonework and/or tile work on walls
- Front entry elements and/or porches
- Enhanced or high quality roofing materials
- Exposed downspouts and gutters painted or made of copper materials
12. OPENINGS

Use openings such as doors and windows in a manner compatible with the neighborhood.

Doors and windows are often the most visually distinctive features on a house. They are a link between private and public space and can provide a sense of security for both. They also can establish an architectural rhythm and affect the apparent mass of the house. Evaluate the openings on the house and in the neighborhood:

- Is there a proportion to the openings, vertical or horizontal, that is common to the house or the neighborhood?
- What are the dominant window materials on the house and in the neighborhood?
- Is there a window or door style, such as an arched shape or divided window lights, common on the house or in the neighborhood?
- What would be the effect of altering the established pattern or style of window or door openings?

12.1 Doors and windows in an addition should be the same shape and size or compatible with the dominant door and window neighborhood patterns, including proportions, materials, and detailing.

12.2 The pattern of windows and doors should reflect the scale and patterns in the neighborhood.

12.3 Include a window or windows visible from the street as desirable architectural features on the portion of the dwelling facing the front yard.

Style and materials of new second-story windows match and appear compatible with the original first story of the house.

New second-story windows have similar proportions and are of same material as original first-story windows.

New second-story windows have different shapes, proportions and materials than the original first story and do not appear compatible.
13. Entries

Main entries should be visible from the street and contribute towards a friendly neighborhood experience.

Front walkways and front doors that face the street are common to most Santa Barbara neighborhoods. Front doors and windows that are visible from the street also make for safer neighborhoods by keeping “eyes on the street” and by providing opportunities for neighborhood connections. Evaluate the design and visibility of entries in the neighborhood:

- How prominent are the primary house entries in the neighborhood?
- Are front porches common, or if not, would they be desirable in the neighborhood?
- What would be the effect of altering the pattern of entries in the neighborhood?

13.1 Use landscaped pathways to the main entry rather than only a connection to the front entry directly from a driveway. This technique creates a main entrance more inviting from the street.

13.2 Generally, front entries should not be blocked with walls, screens, fences, or tall hedges. Any front yard courtyards defined with features over 3 1/2 feet must be carefully designed to maintain a friendly entry appearance when viewed from the street.

13.3 Entries should be designed in proportion to the scale of the dwelling. Avoid use of columns, towers, and other entry features that are out of scale or style with the dwelling and/or neighborhood.

13.4 Entrances taller than one-story are strongly discouraged in Infill areas. Generally, covered entry eave lines should be under 15’ and front entrance openings less than 8’ in width and less than 12’ in height.
14. ROOF DESIGN

Carefully plan roof forms on a home for a well-designed structure compatible with the neighborhood.

Roof patterns are created through the roof slope, materials, and massing of roofs. Some neighborhoods have roof patterns that are distinctive and repeatable from dwelling to dwelling. Other neighborhoods have greater variety or less distinctive roof forms, and greater deviations from neighboring roof forms could appear acceptable. The mass of a roof and how it is articulated into different shapes contributes to the character of a building. Most dwellings with sloped roofs, and many with flat roofs, have a primary roof form and smaller secondary and minor forms that contribute to the overall home style.

14.1 When planning a new dwelling or second-story addition, begin with a primary roof form that is compatible with the existing neighborhood.

14.2 Consider additions to the primary roof, such as secondary roof forms and dormers, to reduce the dwelling’s apparent mass and scale and provide visual interest. Use an appropriate number of roof forms.

14.3 Additional roof forms should be architecturally compatible with the primary form’s slope and material.

14.4 Consider roof design techniques to create a highly efficient and aesthetically integrated solar energy system, described in the City’s Solar Energy System Design Guidelines. For example, a parapet roof design is ideal for new structures that include a solar energy system.

14.5 Screen mechanical equipment
Skylights:

Skylights can be a source of natural lighting; however, they can often become the source of unnecessary heat gain in summer and heat loss in winter. Clerestory windows or “solar tubes” are often recommended as a better way to meet natural lighting needs and maintain an energy-efficient structure.

14.6 Skylights are allowed when they are compatible with the architectural style of the building in which they are proposed and when they are compatible with the character of the surrounding neighborhood.

14.7 Flat skylights, made of non-reflective materials, is the preferred skylight type.

14.8 White plastic skylights or small dome shaped skylights may be acceptable if the skylights are screened by existing parapets, roofs, building forms or other equipment and it can be clearly demonstrated that the proposed skylights are not readily visible from adjacent properties or public ways.

14.9 Plastic domed solar tube skylights may be allowed if placed in areas that are not highly visible.

14.10 The cumulative impacts of exposed roof equipment shall be a consideration when determining the appropriate size, quantity and type of skylights proposed.
15. **ROOF MATERIALS**

Roofing material and color should be consistent with the building architectural style. Eave closures, a.k.a. bird stops, if any are proposed, shall be mortared with natural cement.

Mission Tile. Where a traditional Hispanic architectural style is proposed or where the location is highly visible or prominent, the use of two-piece terra cotta (Mission “C-tile”) roof is required.

- Terra cotta roof tile shall not have a glossy finish.
- Where two-piece “cap and pan” Mission tile is used on gable, shed and hipped roofs, the following installation criteria should apply:

There shall be a double starter row employed at the eave ends. Field tiles are to be laid in random or scattered fashion. The roof should have natural cement mortared hips and ridges. Terra cotta red color should be the predominant color except where other color mixtures are specifically approved. Tile color should be one consistent color with only slight natural variations acceptable. Artificial color “blends” are discouraged.

Exceptions to the required use of Mission Tile policy may be granted if the SFDB makes the appropriate findings and determines a hardship condition exists that precludes Mission “C” roof tile use. Clay S-tile installation will be required to follow standard installation details as outlined below to mimic the Mission tile appearance.

Clay S-Tile:

- Non-clay simulated Mission Tile use is generally unacceptable in new construction.
- Clay S-Tile can be considered for approval for affordable or low-income housing projects.
- The following four criteria will be utilized to determine if the use of clay S-tile will be allowed for re-roof of existing buildings:
 1. The proposed clay S-tile installation is compatible with the building’s architecture and the neighborhood character.
 2. The building cannot structurally support the weight of 2-piece, clay barrel tile and S-tile is an appropriate alternative solution. The inadequate structural conditions that would not allow for a Mission Tile roof must be verified by a licensed engineer or architect.
 3. The proposed installation is consistent with the intent of the SFR Design Guidelines.
 4. The applicant follows installation details as conditions of approval as determined by the SFDB to make the roof more authentic in appearance. Installation details include:
 - A double starter row of two-piece barrel tile is employed at the eave ends.
 - The roof has 15% to 20% of the field tiles laid with mortared randomly placed boosters (kickers).
 - Natural cement mortared hips and ridges are present.
16. EXTERIOR MATERIALS AND COLORS

Exterior materials and colors should complement the style of the house and neighborhood, as well as blend with surrounding natural features when viewed from a distance.

These guidelines are not intended to interfere with individual initiative, but rather to encourage compatibility within neighborhoods and with the natural setting. When selecting materials and colors, consider the type and character of materials and colors, the number of different materials and colors, the quality of materials, and how ornamentation is applied. While no building material or color is prohibited in these guidelines, as with other design elements, the neighborhood context provides direction for the choice of materials and colors. Complementary materials and colors will help a house appear compatible with its neighbors and blend with its natural setting.

Colors:

16.1 Building color should complement architectural details and blend with the surrounding neighborhood.

16.2 Apply ornamentation consistent with the style of the dwelling. Avoid using ornamentation that will make the dwelling appear overly decorated.

16.3 Avoid reflective or metallic materials on roofs, walls and windows.

16.4 Use darker materials and colors to reduce the apparent volume of a dwelling.

16.5 In the Hillside Design District, consider natural earth tone colors that blend with the surrounding topography and terrain.

Stucco Texture:

16.6 Unless otherwise directed by the SFDB, the most acceptable stucco finish is a smooth, undulating troweled finish. A float sand finish may be acceptable. Rough texture, such as heavy Spanish lace, is discouraged unless it is proposed as part of a minor addition to an existing home with this stucco style.

Glass Material:

16.7 In general, deck-railing materials should be selected to be consistent with the architectural style of the structure. The use of glass railings as guardrails or as windscreens is not the preferred material at highly visible locations due to the possible glare associated with these types of installations. Installations of reflective glass materials will be reviewed to determine if the installation is compatible with the structure and that it does not create significant glare problems. Large “picture” windows that are not broken up with mullions and/or muntins will be reviewed for architectural compatibility and for glare problems.

Paving:

16.8 Avoid large expanses of paved area throughout the property. Break up paved areas with colored or textured materials.

Other Features:

16.9 Avoid large expanses of building walls, especially when combined with retaining walls.
17. FENCES, WALLS AND HEDGES

Integrate fences, walls and hedges with structures and setting.

Refer to the Municipal Code height limitations described in the Supplemental Information section of this document. Generally, the Municipal Code states that fences and walls shall not exceed 8’ in height at side and rear property lines or 3½ ’ near driveways and front property lines.

17.1 Minimize fence, hedge and wall heights. Break any retaining walls into low segments.

17.2 Use horizontal lines and proportion to reduce perception of height and bulk.

17.3 Use open rather than solid fence design to reduce visual and structural bulk.

17.4 Use earth tone colors and native, natural materials.

17.5 Integrate vegetation and landscaping with fence and wall design.

17.6 Avoid chain link fences if at all possible. If proposed, chain link should be a dark color such as dark green or black and softened with landscaping.

Good example of landscaping to screen a chain link fence on a 42” tall chain link fence in a West Downtown neighborhood. Vines with right flowers would also be appropriate screening in infill areas.

Picket fence example.

Santa Barbara style stone walls feature multiple cut edges.

Uncut edge stacked stone style walls are not typical in Santa Barbara front yards.
18. PARTIAL BASEMENT DESIGN

Carefully design partial basements so that they do not inordinately create a bulky appearance, or contribute to an inappropriate apparent height.

Daylight, or partial basement designs, where some portions of the floor level are above ground are not considered a full basement. Examples of full and partial/daylight basements can be seen on pages 38-C and pages 54-H - 57-H. Daylight basements may obtain a 50% FAR reduction if at least half of the exterior perimeter walls are sufficiently below grade. (SBMC 28.15.083) Partial basement designs are integral to the entire project appearance and will be reviewed for size, bulk and scale, apparent height, appropriateness and neighborhood compatibility along with the rest of the project regardless of any basement discounts the project may have received. Floor areas completely underground and located within full basements levels are 100% exempt from inclusion in FAR calculations due to these areas not being significantly visible.

18.1 The following basement project types warrant careful review of basement floor areas:
- publicly visible daylight basement
- corner lot location
- especially visible hillside areas.
- if a partial basement size exceeds 25% of the house size

In some cases, large visible daylight basement areas should be reduced, placed underground and hidden from view as they contribute to the size, bulk and scale of a house size.

18.2 Grading and cutting into sloped hillsides to create basement floors is an acceptable grading technique. However, the following basement construction techniques are discouraged:
- excessive fill placement
- excessive retaining walls placement
- elevating natural grades around a structure’s perimeter to create basement floor areas. The placement of this type of grading fill elevates the building higher than the natural topography and may be considered an artificial mechanism to increase floor areas. The SFDB may limit this type of grading design.

Garage Basements:

18.3 Excessive retaining wall placement to create driveway or walk-out basements is not acceptable. The design of a garage opening at the basement level can contribute to a structure’s apparent height. Carefully ensure that any garage basement complies with Apparent Height Guideline 29 and Grading for Driveways Guideline 31.

(Continued on page 38-C)
COMPATIBILITY GUIDELINES AND TECHNIQUES

Full basement example.

Partial basement example: basement with light wells.

Partial basement example: walk-out basement. See pages 54-H - 57-H for another example of a walk-out basement.

Partial basement example: daylight basement.
Two-Story Design Concepts
TWO-STORY DESIGN CONCEPTS

This focus of this section of the Single Family Design Guidelines is on graphic illustrations of two-story design concepts. The first page of the section emphasizes the importance of the Compatibility guidelines for two-story homes and provides additional guidelines especially important for two-story homes. Next, a series of illustrations is provided as listed below. As in all of the sections of this document, many illustrations feature a list in parenthesis immediately after captions of the special two-story guidelines which are exemplified by the illustration.

• **Alternative Design Solutions for an Existing One-Story House**

 Successful additions centered over the existing home, p. 40-TS.
 Successful and unsuccessful addition over the existing garage, p. 41-TS.

• **Example successful and unsuccessful drawings of two-story homes in context with neighboring homes**, p. 42-TS.

• **Example photos and illustrations of second-story element design techniques**, p. 43-45-TS.
TWO-STORY DESIGN CONCEPTS

Two or more story homes require special care in design to ensure they are compatible in a neighborhood. The Compatibility Guidelines in the previous chapter are more important for two-story homes than for one-story homes because two-story homes can appear more prominent in a neighborhood. Following are special design techniques and illustrations for two or more story homes.

19. Avoid crowding or overwhelming neighboring residences.
20. Avoid a “vertical canyon effect” between homes. The space between a proposed two-story home adjacent to one-story homes is important. Space between homes should increase as wall height increases. Consider setbacks greater than those required by the Municipal Code to avoid bulky structures.
21. Minimize areas of maximum height.
22. Vary height of building elements.
23. Vary roof lines.
24. Set back taller portions of structures from the lot lines to reduce the appearance of height.
25. Use architectural features to break up unacceptable bulk.
26. Three-story homes are generally incompatible in most of Santa Barbara’s flat “infill” neighborhoods.

A two-story residence that maintains a single-story roofline common to the immediate neighborhood.

The mass of this house is reduced by lowering the plate height, using dormers and including an entry element.

Second-story addition oriented to home’s rear and designed to reduce structure’s volume visible from the street. (19, 21, 24)
EXAMPLES OF ALTERNATIVE DESIGN SOLUTIONS

Existing residence to be remodeled.

Second story addition moved away from existing setback and designed in same style as existing house (21, 22, 24).

Second story addition moved away from setback and whole house remodeled in a single style (21, 22, 24).
Examples of Alternative Design Solutions

Existing residence to be remodeled.

Large addition on setback in different style than existing house and the home appears “unbalanced.”

Second story addition over garage in same style as existing house, and the massing while still unbalanced is improved.

(Further consideration of these guidelines is needed: 19, 20, 24).
The center home has disproportionate building elements and a scale which is incompatible with the neighborhood.

The center building is in scale with neighboring houses.

The center home has disproportionate building elements and a scale that is incompatible with the neighborhood.

The center building is in scale with neighboring houses.
Examples of design solutions that illustrate good application of two-story design.

This two-story home minimizes areas of maximum height (1.5), varies heights of building elements (22) and uses an arch and recessed windows to break up the home’s volume (25).

This two-story home in the East Mesa neighborhood has a significant step back of its second floor (24) and has its windows and upper story deck oriented toward the street.

The second floor of this building is centered within the roof form, reducing apparent bulk and keeping the highest portion of the building away from property lines. (20, 21, 22, 23, 24, 26)

This two-story home features varied roof lines by varying the lengths of the roofs (23), minimizes areas of maximum height (21), and avoids crowding its neighbors (29).
The stepped back second story of this home is much smaller than the first floor. Also, architectural features and varied roof lines break up the second story bulk. (20, 21, 22, 24, 25, 26)

This two-story house in the East San Roque neighborhood features a stepped back second story. Architectural elements such as quality window & eave detailing and a prominent porch entry help the second floor to appear less massive. (21, 24, 25)

The second-story of this home is small in comparison to the first floor. Also, the home is set back far from the street on this large lot in the Foothill neighborhood. (21, 24)

The second floor of this home is within the roof form, reducing the apparent bulk of the house. (21, 25)
Hillside Housing
Design Guidelines and Techniques
Hillside Housing Design Guidelines Summary

27. Natural Surroundings
Blend the house into its natural surroundings, p. 49-H.

28. Height and Proportions
Building height should be in proportion to the style and size of the house and to the lot area, p. 52-H.

29. Apparent Height
Structures should have a modest “apparent height” (lowest point of contact with grade to highest point of building dimension), p. 53-H.

30. Grading
Limit the amount of grading to avoid erosion, visual impacts and other impacts, p. 58-H.

31. Grading for Driveways
Minimize and mitigate visual effects of grading for driveway purposes, p. 59-H.

32. Architectural Features
Use architectural features that are consistent with the chosen style to break up unacceptable massing, p. 60-H.

33. Neighborhood Compatibility
Design structure to fit with the existing neighborhood, p. 61-H.

34. Decks and Courtyards
Locate decks and courtyards in areas compatible with the neighborhood, p. 61-H.

35. Retaining Walls
Design retaining walls to blend into their surroundings, p. 62-H.
HILLSIDE DESIGN DISTRICT INDEX MAP

The three shaded areas comprise the Hillside Design District where developments are subject to Hillside Housing Guidelines, additional required Neighborhood Preservation Ordinance findings, and special Design Review project routing. These projects must also comply with applicable Compatibility, Two-Story and Good Neighbor Guidelines. Projects with slope constraints in other parts of the City are also subject to the Hillside Housing Guidelines.

Enlarged maps are available at the Planning Counter, 630 Garden Street or at: www.SantaBarbaraCA.gov.
HILLSIDE DESIGN DISTRICT MAP - AREA 2
Hillside Housing Design Guidelines

Hillside Design District Map - Area 3

27. **Natural Surroundings**

Blend the house into its natural surroundings.

27.1 Balance stepping the building up or down the hill with avoiding excessive spill down (Also See Guideline #28).

27.2 Balance setting the building into the hillside with minimizing grading (Also See Guideline #29).

27.3 Avoid large continuous paved areas. Paved areas should be broken up by using colored or textured materials.

27.4 Natural earth tone colors that blend with the surrounding topography and vegetation are encouraged.

27.5 Fit in with hillside topography and background.

27.6 Avoid interrupting natural ridgelines and skylines. Set the house below these.

27.7 Use landscaping to blend the structure with the environment. Refer to the SFDB Guidelines, Part II: Landscaping for tips on blending landscaping with the surrounding natural terrain.

27.8 Use materials and colors to reduce the apparent bulk.
27. **Natural Surroundings Continued.**

Note: The “plus” examples in the illustrations above also comply with guideline 29.1 on page 53-H, which encourages an “apparent height” (lowest point of contact with grade to highest point of building dimension) of less than 30’ for hillside homes.
27. **Natural Surroundings Continued.**

27.9 Minimize exposed foundations and undersides of structures (e.g., underside of buildings or decks).

27.10 Avoid these design mistakes which raise both aesthetic and fire safety concerns:

- Exposed underfloor areas
- Large downhill cantilevers
- Tall support columns for overhanging areas

27.11 To plan for a firesafe landscaping and building design, follow the City’s High Fire Hazard Landscape Standards and refer to the SFDB Guidelines, Part II: Landscaping, 5.3 High Fire Hazard Landscape Design.
28. Height and Proportions

Building height should be in proportion to the style and size of the house and to the lot area.

28.1 Set back higher portions of the structure to reduce the appearance of height.
28.2 Vary height of building elements.
28.3 Minimize areas of maximum height.
28.4 Avoid using designs intended for flat lots on the hillsides.

Note: The Chimney is an architectural projection; therefore it can project beyond the maximum building height.
29. **APPARENT HEIGHT**

Structures should have a modest “apparent height” (lowest point of contact with grade to highest point of building dimension).

29.1 Homes with an apparent height less than 30’ are preferable. Design review boards will carefully consider appropriateness of homes exceeding an apparent height of 30’.

29.2 Although the Municipal Code height limit is 30’ in single family residential zones, appropriate hillside project proposals usually have a height of 25’ or less, especially where the slope is less than 25%.

29.3 Retaining walls which create a grade higher than natural grade underneath a residence contribute to a structure’s apparent height.

29.4 Homes with a total run of less than 60’ in horizontal distance for combined steps are preferred.

29.5 More spilldown is appropriate on very steep lots to minimize grading than would be appropriate on moderately steep or gently sloping lots.

Two elevations are shown for three home scenario examples on the same site on pgs. 46-49.

Ex. 1: Two-story home cut into the hillside, consistent with 29, 29.1, 29.2, & 29.4 above.

Ex. 2: Three-story home cut into the hillside, inconsistent with 29, 29.1, 29.2 & 29.4 above.

Ex. 3: Three-story home not significantly cut into the hillside, extremely inconsistent with 29, 29.1, 29.2 & 29.4 above.
Example 1 - Apparent Height 27’

Side Elevation Site Section View

- Modest horizontal downhill run.
- Limited to 2 stories.
- Lower floor cut into hillside helps reduce apparent height.

Example 2 - Apparent Height 37’

Side Elevation Site Section View

- Significant horizontal downhill run.
- Significant cut into hillside does not adequately reduce apparent height, as number of stories and horizontal run are too aggressive.
- All 3 stories are fully apparent for full width of structure on the downhill side.
Hillside Housing Guideline #29 (cont’d) Structures should have a modest apparent height

Example 1 - Apparent Height 27’
Downhill Elevation view

Example 2 - Apparent Height 37’
Downhill Elevation view
Example 2 (Repeated) - Apparent Height 37’
Side Elevation Site Section View

• Significant horizontal downhill run.
• Significant cut into hillside does not adequately reduce apparent height, as number of stories and horizontal run are too aggressive.
• All 3 stories are fully apparent for full width of structure on the downhill side.

Example 3 - Apparent Height 47’
Side Elevation Site Section View

• Horizontal downhill run is too long.
• Too many stories.
• No cut into hillside to minimize apparent height, especially along side elevations.
• All 3 stories are fully apparent for full width of structure on the downhill side.
Hillside Housing Guideline #29 (cont’d) Structures should have a modest apparent height

Example 2 (Repeated) - Apparent Height 37’
Downhill Elevation View

Example 3 - Apparent Height 47’
Downhill Elevation View
30. **Grading**

Limit the amount of grading to avoid erosion, visual, and other impacts.

30.1 Carefully plan your project to minimize grading both underneath the main building footprint and on the entire site. Most reasonably sized development projects should be able to achieve a project program with less than 250 cubic yards of grading on a property. Only rarely do projects need to approach 500 cubic yards of grading, not including grading under the building footprint, to achieve reasonable development of a property.

30.2 Preserve slopes greater than 30% by avoiding grading and clearing.

30.3 Avoid visual scarring.

30.4 Retaining walls should be incorporated under the house.

30.5 Minimize the visual impact of grading by doing most of the cut under the buildings.

30.6 Attempt to balance cut and fill on site, while recognizing that export may be necessary to preserve the natural topography.

30.7 Excess materials may be used elsewhere on the site if the grading results in minimum changes to the natural contours and will not be distinguished from surroundings within a short period of time.

30.8 Man-made contours should mimic natural contours.

30.9 Avoid hiding downhill foundations with fill.

The project follows natural contours, minimizing grading. (27.2, 30.1). Landscape “softens” lower exterior or retaining walls (27.7). The structure has low profile and limited stories (28.3, 28.2, 32.1). The structure is cut into the slope (30.5). The driveway follows natural contours (31.2, 31.4).

Stepped building placement works with the contours and minimizes grading (27.5, 30.1). Natural landscaping blends the structure into the surroundings. (27.7). The higher portion of the project is set back further from the street. (28.1). Build contours are natural looking (30.8). Garage is near the street to maintain a short driveway. (31.1) Structure has varied rooflines (32.1). The project is of modest scale (33.1).
31. **Grading for Driveways**

Minimize and mitigate visual effects of grading for driveway purposes.

31.1 Set house on the site so that the length of the driveway is minimized.

31.2 Minimize the visibility of driveway cuts from the property.

31.3 Use planting, wall materials, and colors to minimize visual effects of driveway cuts.

31.4 Design driveway slope with the natural topography.
32. **ARCHITECTURAL FEATURES**

Use architectural features that are consistent with the chosen style to break up unacceptable massing.

32.1 Vary rooflines.

32.2 Use a combination of vertical and horizontal elements.

32.3 Use doors and windows to create patterns.

32.4 Use stepbacks and projections in the design to create interest.

32.5 Tall elements should be placed toward the center of the uphill portion of the building.

The architectural features of the tower, chimney and windows create interest (32.3, 32.4).

Locating tallest structures toward the center of the project reduces the apparent massing (32.5).
33. Neighbourhood Compatibility

Design structure to fit with the existing neighborhood.

33.1 Be compatible with neighboring houses in terms of proportion, size, bulk, height and setbacks.

33.2 Review the Compatibility Section of this document, including Architectural Style and General Compatibility Principles.

33.3 Avoid crowding or overwhelming neighboring residences.

33.4 Review Good Neighbor Guidelines section of this document.

33.5 Minimize creation of a vertical canyon effect between houses. When a two-story house is proposed adjacent to one-story houses, the space between them is important. The space between houses should increase as wall height increases.

34. Decks and Courtyards

Locate decks and courtyards in areas compatible with the neighborhood.

34.1 In hillside areas, special consideration is required for placement of decks and outdoor courtyard placement. Depending on topography, these features have the potential to greatly affect downhill neighbors’ privacy and noise levels. Often, keeping decks and courtyards within the Municipal Code setbacks listed for a zone district, even when not required, can help to maintain good neighbor relations.

34.2 Place outdoor fireplaces and chimneys in a location that will not impact neighbors’ views, privacy, noise or air quality. (Also see Good Neighbor Tips pgs. 61-N through 79-N.)
35. **Retaining Walls**

Design retaining walls to blend into their surroundings.

35.1 Minimize length of solid fences, landscape walls, and retaining walls on hillsides. Walls should not exceed 50’ in length.

35.2 Minimize fence and wall heights. An 8’ wall may be acceptable if the materials are aesthetically pleasing (for example, stone), but a 6’ height limit is more appropriate for materials such as stucco.

35.3 Long, continuous walls may be acceptable if they undulate, are broken up by buttresses or pilasters, and are of appropriate natural materials such as stone or adobe. Plaster walls may be acceptable at the SFDB’s discretion.
35. **Retaining Walls continued.**

35.4 Use horizontal lines and proportions to reduce perception of height and bulk.
35.5 Follow topography with fence and wall design.
35.6 Use earth tone colors that tend to blend with the surrounding natural colors of the hillsides and minimize visual effects. Avoid use of colors contrasting with the surrounding natural terrain such as bright white walls or large areas of bright non-native flowers.
35.7 Use stone or other native, natural materials.
35.8 Integrate vegetation and landscaping with fence and wall design.
35.9 Avoid locating retaining walls near existing walls.
35.10 Retaining walls with fill behind them can be particularly visually disruptive.

An example of quality wall design and complementary landscaping in the Cielito neighborhood. (35.7, 35.8, 35.9)

Newly completed terraced retaining walls in the Cielito neighborhood blend well with the surrounding terrain and adjacent home. Landscaping plants also complement the terrain and walls. (35.7, 35.8, 35.9)
35. RETAINING WALLS CONTINUED.

35.11 Stepped or terraced retaining walls, with planting in between, may be an acceptable alternative to tall retaining walls.

35.12 The minimum distance between two terraced retaining walls should be at least the average height of the two walls.

A stepped terrace design avoids creating a tall retaining wall and plantings obscure the short terrace walls in this example on Foothill Road. (35.2, 35.11)
35. Retaining Walls continued.

35.13 The following are suggested maximum heights for fill slope retaining wall systems:
- 6 feet suggested maximum exposure for individual retaining walls
- 12 feet suggested maximum combined exposed retaining wall faces.
35. Retaining Walls continued.

35.14 The following are suggested maximum heights for cut slope retaining wall systems:

- 8 feet suggested maximum exposure for individual retaining walls.
- 16 feet suggested maximum combined exposed retaining wall faces.

Retaining Wall Height Limits for Cut Slopes. (35.14)
Good Neighbor Guidelines and Tips
GOOD NEIGHBOR GUIDELINES AND TIPS SUMMARY

GOOD NEIGHBOR GUIDELINES

36. Privacy, p. 68-N
37. Landscaping, p. 75-N
38. Noise, p. 75-N
39. Lighting, p. 75-N

GOOD NEIGHBOR TIPS

Views, p. 78-N
Construction Impacts, p. 79-N
Managing Conflict with Comfort, p. 82-N
GOOD NEIGHBOR GUIDELINES & TIPS

The following guidelines and tips can help you remain friends with your neighbors after the completion of your new or remodeled house. They are based on the Golden Rule: “Do unto others as you would have them do unto you.”

Think about what your concerns would be if your next door neighbor were proposing to either build a new house or add on to an existing house. Incorporate those concerns into your thinking as you design your own new or remodeled house.

It is the intent of these guidelines and tips to advance sound planning in building homes and additions with scrutiny of neighborhood compatibility, views and privacy. While it is not the intent to create a right to privacy or views, a compromise that advances these goals is highly desirable.

BEFORE COMPLETING YOUR DESIGN

- Design your addition or your new house as if you were going to live next door to it.
- Talk with your neighbors and show them your proposed design.
- Consider organizing a meeting with your neighbors to encourage neighbor discussions.
- Read the article regarding “Tips for Managing Conflict with Comfort” provided in this section which can help provide guidance for successful discussions.

In General

When your project is reviewed by the Single Family Design Board (SFDB), the SFDB will be looking for general compliance with these Good Neighbor Guidelines (See Finding 6 on page 5-D) along with other Neighborhood Compatibility Findings. The SFDB understands that, in some cases, strong compliance with privacy, landscaping, noise and lighting guidelines may not be possible or necessary. However, in cases where there appear to be significant potential issues raised by a project design that would not be posed with a suitable alternative design more sensitive to neighboring properties, the SFDB may deny the project. It is necessary that you communicate to the SFDB how your project is generally consistent with the Good Neighbor Guidelines. The techniques below will help when you appear before the SFDB:

- Discuss how you have designed your project with your neighbors in mind
- Summarize for the SFDB the results of any discussions you have had with neighbors about your project.

Using these techniques can help the SFDB to see how you have made a “good faith effort” to be generally consistent with the Good Neighbor Guidelines.

This chapter covers the following guideline and tip topics.

Guidelines	Tips
1. Privacy | • Private Views
2. Landscaping | • Construction Impacts
3. Noise | • Managing Conflict with Comfort
4. Lighting
GOOD NEIGHBOR GUIDELINES & TIPS

GOOD NEIGHBOR GUIDELINES

36. PRIVACY GUIDELINES

36.1 Visual Distance
Locate structures and additions to increase visual distance between buildings. Avoiding large two-story building masses at the sides and rear of adjacent single family rear yards can help preserve privacy and sunlight access for your home and for neighboring properties.

Rather than simply following Municipal Code minimum setback standards, consider what a comfortable distance between a proposed addition and an existing neighbor’s structure would be. Also consider the pattern of building separation in the immediate neighborhood and design a project compatible with this pattern. Locate areas that require more privacy away from your neighbors. Orient active outdoor areas away from neighbors.

36.2 Upper-Story Decks and Balconies
Avoid or minimize the number of decks that overlook neighboring properties. Locate upper-story balconies and decks to minimize the loss of privacy for neighboring properties. Upper-story balconies or decks facing the street are usually preferable to upper-story balconies or decks facing a yard area adjacent to a neighbor. Techniques to lessen impacts to neighboring property privacy include the following:

36.2.1 Meeting with neighbors adjacent to proposed upper-story balconies and decks prior to beginning the City application process is strongly encouraged.

36.2.2 Screen second-story balconies and decks from neighboring property by incorporating architectural screening elements such as enclosing walls, trellises, or awnings. For example, effective enclosures might include walls over 4’ and perimeter planters facing neighbor’s side or rear yards.

36.2.3 Locate second-story balconies and decks to avoid direct sight lines from the deck or balcony to neighbors’ windows, open yard, patio, deck, and/or loggia areas.

36.2.4 Set back upper-story decks or balconies over 20 square feet at least 15’ from interior lot lines when possible.

36.2.5 Avoid siting any “free-standing” chimneys on upper-story decks or balconies. Such chimneys look “out of place” architecturally and are better sited adjacent to a structure. Also, such chimney might block neighbors’ views. If Building and Safety minimum clearance standards can be met, chimneys are generally recommended to be less than 8’ in height.

36.2.6 In Hillside areas, special consideration is needed for decks and outdoor courtyard placement. Depending on topography, these features have the potential to greatly affect downhill neighbors’ privacy and noise levels. Often, keeping decks and outdoor courtyards within the Municipal Code setbacks listed for a zone district, even when not required, can help to maintain good neighbor relations.
Positive Neighborhood Amenity

<table>
<thead>
<tr>
<th>Least Privacy Impact to Neighbors (Preferred)</th>
<th>Most Privacy Impact to Neighbors (Discouraged)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-floor patios & decks inside setback lines 2nd-Story decks and balconies on front property line</td>
<td>2nd-story decks and balconies on side or rear of house, more than 15’ from a neighbor’s property line</td>
</tr>
<tr>
<td>2nd-story decks and balconies on side or rear of house, less than 15’ from property line, less than 3’ x 7’ in size</td>
<td>2nd-story decks and balconies on side or rear of house, less than 15’ from property line, larger than 3’ x 7’ in size</td>
</tr>
</tbody>
</table>

Balcony: A platform cantilevered from the wall of a building, usually resting on brackets or consoles, and enclosed with a railing.

Deck: A flat open platform, typically with a railing, either attached to a building or free-standing and supported by pillars, posts, or walls.
Good Neighbor Guidelines & Tips

Note: The focus of these photos are the deck privacy features only. Please refer to Compatibility Guidelines and Infill Guideline for information regarding designing compatible two-story homes.

Front yard deck in the East Mesa neighborhood is set forward from neighbors’ front building lines and it also features deeply recessed privacy sidewalls. (36.2.2, 36.2.3, 36.2.5)

This front yard deck in the East Mesa neighborhood is set closer to the street than the adjacent neighbor’s home, resulting in less privacy impacts to the neighbor’s side yard windows and living space. (36.2.3, 36.2.5)

This front yard deck in the Alta Mesa neighborhood features a privacy screening wall on the edge of the deck closest to an adjacent neighbor. (36.2.2, 36.2.3, 36.2.5)

A second floor uncovered deck set into the roof of the first floor maintains the apparent volume of the structure and avoids a “looming” effect in the Samarkand neighborhood. (36.2, 36.2.3, 36.2.5)
Side yard decks invade privacy. More attention to guidelines 36.2.2 and 36.2.3 is needed for projects and below.

Free-standing decks supported by pillars rather than building elements are less attractive.

This deck appears to “wrap around” the house, creating the ability for occupants to look over neighboring properties from every point, which can create privacy issues for neighbors.

Avoid placing fireplaces with chimneys on outdoor decks separated from the main structure. (36.2.5)
36.3 **Upper-Story Windows:** Minimize the number of windows on proposed buildings that overlook neighboring properties. Orient your upper-story windows to protect your neighbor’s privacy. You may not want to see them any more than they want to be seen by you.

36.3.1 Place windows to avoid direct views into existing neighboring windows by offsetting or staggering windows facing neighbors’ windows.

36.3.2 Avoid large upper-story windows overlooking adjacent rear yards.

36.3.3 Use translucent window glass or high windows to allow illumination while protecting privacy.

36.3.4 Set back upper floors or increase side and rear setbacks to pull windows farther away from neighboring residences.

Privacy Views: Setting second stories back further than the first-story requirement will help screen views between adjacent houses. (36.3.1, 36.3.2, 36.3.4)

Privacy Views: Offset window location or strategically placed trellises will help prevent views into adjacent houses. (36.3.1)

Orient second-story windows to protect neighbor’s privacy.
Inset corner windows can help avoid direct alignment with neighbor’s windows. (36.3.1, 36.3.4)

Privacy Views: Avoid placing windows in locations that would look into adjacent windows or active yard spaces, where possible.

High window placement helps prevent views into adjacent houses. (36.3.1, 36.3.2, 36.3.3, 36.3.4)
Existing Neighbor

Application for proposed spa

Privacy Problem for both Dwellings

Wide planter keeps view from deck edge, privacy increased

Screen planting reduces sensation of upper house looming over neighbor below

Screening tree selected to have a low mature height to prevent blocking the long view of the neighbor

Spa cut into hillside
37. **LANDSCAPING GUIDELINES**

37.1 Review the SFDB Guidelines, Part II. 2.1. Screening plants, such as hedges on side and rear property lines, should be considered to create privacy between neighbors. Hedges must comply with SBMC 28.87.170.

37.2 Keep existing vegetation that currently gives privacy to you or your neighbors.

37.3 Use landscaping to screen living areas.

37.4 Use evergreen trees and shrubs to provide year-round privacy.

37.5 When window placement creates direct views between neighbors that need to be shielded, such as when a balcony placement may allow a line of sight into a neighbor’s side or rear yard, or if an applicant is not able to stagger windows, a landscape plan to provide additional screening may be required by the SFDB.

37.6 Review the SFDB Guidelines, Part II and design landscaping consistent with the guidelines.

38. **NOISE GUIDELINES**

38.1 Orient active outdoor areas away from neighbors.

38.2 Avoid placing noise sources at the sides of small lots or near neighboring windows of frequently used rooms (pool or air conditioning equipment, garbage can, parking areas, balconies, barbecue areas, spas, outdoor furniture, etc.).

38.3 Retain or add walls that act as noise buffers.

38.4 Equipment which runs on a regular basis and that must be attached to a structure should minimize noise impacts to neighboring properties. Consider siting air conditioning, pool, and other mechanical equipment as far from neighboring structures as possible and insulate equipment. Municipal Code 9.16.025.C requires that all mechanical equipment not exceed 60 dB(A) CNEL at a residential property line.

39. **LIGHTING GUIDELINES**

Lighting for single family homes is usually proposed for security and decorative reasons, and should be designed in a way that it is not detrimental to neighboring properties. A good lighting plan for a home will provide sufficient light for adequate site security, will use fixtures appropriate for the style of architecture, and will use the least amount of light and energy necessary to meet those objectives. “Night glow,” the effect of artificial lights illuminating the night sky and making stars less visible, has become a concern in many neighborhoods. All projects must comply with the City of Santa Barbara’s Outdoor Lighting Ordinance (Municipal Code Chapter 22.75) and Outdoor Lighting and Streetlight Design Guidelines, as well as State energy codes. Following these guidelines will help create an attractive ambience in your neighborhood and allow Santa Barbara’s stars to be more visible at night time.

The design of the exterior lighting should not attempt to compensate for low levels of street lighting typical in hillside neighborhoods. Lighting in hillside areas requires special attention and care, as the low ambient light levels can exaggerate the impact of poorly designed lighting.
39.1 **Generally.** In general, all exterior lighting should be designed, located and lamped in order to prevent or minimize overlighting, energy waste, glare, light trespass, and skyglow.

39.2 **Minimize Lighting.** Plan carefully to only install lighting where it is needed. Directional lighting and lower intensity lamps can reduce lighting impacts. Indiscriminate flood-lighting of broad areas is unacceptable. Where safety “flood-lighting” is proposed for areas such as garage entries, only use lighting activated by motion sensors and directed downward.

39.3 **Keep Lighting Low and Close.** Light sources for landscape lighting should be near to the ground. Fixtures mounted on the building should relate to a human scale in their size and mounting height. Flood-lighting for security, when used, must be aimed close to the building and not create glare for neighbors.

39.4 **Consider Distant Views.** Light sources must not be objectionable when seen from a distance. Is your property on a hillside visible from other areas? Consider how to place lighting on your site in ways that will minimize visibility from distant locations.

39.5 **Driveways.** Where possible, design driveways and landscaping so that headlights do not shine onto neighboring properties. Avoid the use of lighting fixtures spaced along the length of a driveway, limiting use and placement to the minimum necessary for safety. Keep in mind the view of this lighting from surrounding areas.

39.6 **Walkway Lighting.** Along walkways, low-level lighting in the form of bollards or fixtures mounted on short posts are the preferred lighting solution. Fixtures should be located to avoid hazards for pedestrians or vehicles, and should account for growth of landscaping.

39.7 **Light Shielding.** Where other than low-intensity light sources are used, fixtures must incorporate shielding to prevent objectionable brightness or light trespass. The city’s Outdoor Lighting Guidelines contains useful charts of the intensity of different light sources, and when shielding becomes required. Keep in mind that even low-intensity light sources that are shielded, may still be directly visible from downhill neighbors, and considered a nuisance.

39.8 **Landscape and Building Lighting.** “Up-lighting” of trees and building elements is discouraged, but when used, such lighting must be limited in its use, and fixtures must confine lighting to features being lit through use of shielding, lamps with low intensity and appropriate beam spread, and timers.

39.9 **Outdoor Living Areas.** Lighting for outdoor living areas such as decks, patios, and swimming pools should be designed to minimize the visibility of the lighting from the surrounding neighborhood. Mounting of floodlights on the building wall and aiming away from the building is not acceptable.

(Continued on page 78-N)
Flood lights are only allowed with motion sensors or controls.

Unshielded fixtures can result in light on neighboring properties and detracts from the night sky appearance.

Use downward directed shielded fixtures especially if not located under a roof eave or dormer.

Modest landscape area lighting for safety is appropriate.

Upward directed landscape lighting.
39.10 **Prohibited Lighting.** Municipal Code Section 22.75.030.A prohibits the use of the following fixtures in all zones:

1. Lighting fixtures mounted in such a way as to illuminate a roof or awning.
2. Lighting fixtures mounted to aim light only toward a property line.
3. Lighting fixtures mounted in a way that is distracting to motorists or that interferes with the safe operation of a motor vehicle, as may be determined by the City Engineer.

In addition to these ordinance provisions, lighting of architectural features or athletic courts is not appropriate for single family structures.

GOOD NEIGHBOR TIPS

TIPS FOR CONSIDERING NEIGHBORS’ VIEWS

- Visit your neighbors’ houses to see how your building will affect their views and work to accommodate their concerns.

- Be sensitive to your neighbors’ views in the placement and architectural appearance of your house or addition.
 - Identify neighbors’ lines of sight and current views and how both your neighbors’ views and your own can be preserved or enhanced through a good design.
 - Where it is possible to preserve a view from a neighbor’s property, achieve your project goals and respond effectively to environmental and other site constraints, then locate new dwellings so they interfere minimally with the neighbors’ views. Where compromise between these various project components must be made, if possible, strive to place a new dwelling so that similar amount and quality of private views may be achieved on a neighbor’s property as on your property.
 - Fences and hedges on Coastal bluff properties often follow property lines perpendicular to the shoreline. These fences and hedges should maintain an open and unobstructed feeling in keeping with the ocean front. Consider your views and your neighbors views that occur at
oblique angles across one another’s properties. Avoid privacy fencing or hedges that extend well beyond the house toward the ocean. Minimize the visibility of fences and hedges from neighboring houses and from the ocean and beach.

- Reduce height of the structure to minimize blockage of views.
 - Define neighbors’ views and how your new project will affect the views.
 - Introduce methods that can be used to limit views blocked due to a building’s height.
 - Be sensitive to the existing size and bulk patterns in the neighborhood.

- Locate higher portions of the structures to minimize view blockage.
- Consider views from major living areas as well as other high quality views.
- Avoid tall landscaping, fences or walls that interfere with your neighbors’ views. Consider the mature plant growth height when selecting plants.
- Screen solar panels, satellite dishes, radio antennae and other equipment from neighbors’ views to the maximum amount possible.
- Refer to pages 73-N and 74-N regarding design techniques to minimize impacts on views.

TIPS FOR MINIMIZING CONSTRUCTION IMPACTS

- Tell neighbors:
 - When work will begin and the approximate completion date.
 - Who they can contact if any problems or concerns arise.

- Limit the noise of power tools to standard business hours. Municipal Code 9.16.015 generally limits construction to between 7AM and 8 PM.
- Have materials dropped in the driveway or yard, not the street.
- Have dumpsters removed as soon as they are full; only keep them when they are truly needed.
The horizon line is the most sensitive part of a view, then the foreground, then the middleground. If possible, avoid cutting off the horizon line of a neighbor’s view. Also, avoid blockage of important landmarks in a neighbor’s view (e.g. the harbor, State Street, the Courthouse).

Proposed structure blocks center of view.

Proposed structure blocks only part of the center of view, however, the lower height maintains the neighbor’s view of the horizon line.

Proposed structure blocks only part of the view to the side and would preserve views of well-known Santa Barbara landmarks.

Proposed structure blocks only part of the view to the side and does not interrupt the horizon.
A new home sited for full vistas above existing residences downhill blocks views of the uphill homes.

A new home reoriented to step down the hill and located further down the hill achieves a better balance between maintaining uphill neighbors views and achieving a view.
Value of conflict. Conflict can strengthen and enhance relationships, or it can destroy them. Since we tend to regard conflict as negative, the first step toward constructive conflict is to recognize both positive and negative aspects.

Positive outcomes of conflict resolution can include:

- Opens communication between people.
- Replaces old goals with more relevant ones.
- Increases innovation through a greater diversity of viewpoints.
- Groups and individuals achieve greater awareness of their own identities.
- Leads to innovation and better solutions to problems.
- Strengthens relationships and interpersonal skills.
- Improves problem-solving skills.
- Provides an opportunity to avoid aggression.

Negative outcomes of conflict can include:

- Misallocation of limited resources (time and money) to circumvent the conflict.
- Barriers to communication, cooperation, and understanding.
- Lower productivity and diverted energy from accomplishing goals.
- Negative impact on mental and physical health.
- An “Us vs. Them” environment.
- Irresponsible behavior and distortion of goals or motives.

Value constructive controversy. Thoughtful dissent (what may appear to be interpersonal conflict) results in reaching better decisions. Conflict resolution is not about eliminating disagreements, diversity of opinion, or alternate viewpoints that are crucial to good decision making. Good leaders build dissent and controversy into the decision-making process so that people are more willing to speak out and offer ideas contrary to their own. Take the time - and encourage others - to listen to ideas, information, facts, or concepts that are contrary to your own. Too often “conflict resolution” takes the form of suppressing all disagreements, rather than using them as decision improvement opportunities.

Before you work on a resolution. Keep in mind these ideas before you start to work on an issue:

- Be sure it’s a real problem worth spending the time to resolve.
- Focus on the root causes of the problem - not just the symptoms or personalities.
- Be prepared to work toward a mutually agreeable solution - not just winning your point of view.
- Prepare yourself to listen and understand other points of view on the issue.
- Keep some perspective. Disagreement and conflict are expected whenever people coexist. Relationships are not destroyed - and often enhanced - by working towards a mutually agreeable solution.
- Remember that it’s all right to disagree, and the other person is not wrong to disagree with you.
Listen for perspective. Understanding other perspectives is a key to finding resolution. Use reflective listening techniques such as paraphrasing, repeating back, and non-verbal signs. Do your best to understand the frame of reference of the speaker; seek out the background and life experiences on which they base their perspective.

Own your part. It takes at least two or more parties for a conflict to exist. Be willing to take responsibility for your contribution to the problem. Acknowledging your contribution (or perceived contribution) can be an important first step in the resolution process by opening communication and lowering barriers.

Be the first to make a concession. Take the lead in making the negotiation work. An early concession in an area important to the other person/group usually results in their reciprocation in other areas or ideas. Take the lead in suggesting trade-offs by giving something another person wants in return for something you want.

Stay objective. In the heat of discussion, it’s easy to display your feelings and emotions to a point they block the possibility of resolution. Use “I messages” and other techniques to talk about your feelings rather than acting them out. Work on not letting your own feelings block you from hearing what the other person is saying.

Practice effective communication skills. You model the way and encourage resolution when you apply good communication skills during the discussion:

- Listen and make sure the other person knows you’re listening.
- Maintain eye contact.
- Use the person’s name.
- Take notes, if appropriate, to show interest.
- Don’t interrupt - let the person fully express their thoughts and feelings.
- Ask questions to clarify and confirm details.
- Stop talking and listen again.

Deal with one issue at a time. Maintain your focus on the point of conflict. There is a temptation to bring up unresolved issues from the past in an attempt to catch the other person off guard. This can start a second conflict unrelated to the first. If an unrelated issue is raised, do not respond except to indicate that it is not what you are dealing with at the time. Try suggesting that it could be dealt with at a later time. Many times these other issues become insignificant once the key conflict is resolved. One exception is if the secondary issue is, in fact, the root cause and is blocking the resolution of the current issue. If so, move to resolve the secondary issue first.

Search for the “win/win.” When working on an issue constantly search for arrangements where both parties are involved in a “win.”

Timing. Find a time when all parties are ready and willing to work on dealing with the conflict. Give everyone a little time to deal with anger or the “heat of the moment” and prepare them to deal with the issues. Finding the right time helps prevent unnecessary defensiveness, resentment or personal animosity that occurs when one of the parties feels dragged into the discussion.

Reacting to unintentional remarks. Often in the heat of a discussion things are said that are regretted an instant later.
TIPS FOR MANAGING CONFLICT WITH COMFORT (cont’d)

This is particularly true when the issue is of deep personal significance to one or both of the parties. It occurs because often people don’t know precisely what they think or feel until they hear themselves verbalizing these feelings or thoughts. When such a questionable comment is made, determine whether it accurately conveys what the speaker meant. If not, everyone should ignore it and move on. If yes, it may indicate a root cause of the conflict and should be further explored.

Discussion techniques. Try some of these ideas to help diagnose the conflict and identify the root cause(s):

- Ask those who disagree to paraphrase one another’s comments. This may help them learn if they really understand one another.
- Ask each member to list what the other side should do. Exchange lists and seek options which all parties can live with.
- Search for cause, not blame.
- Seek closure at the end of a discussion by summarizing points made and points agreed upon.

Allow for saving face. Being “right” and devastating one’s opponent may appear personally satisfying. However, this approach produces only momentary satisfaction and can be very costly by precluding any solid resolution and spawning future retaliation. The longer a conflict goes on, the higher the ego involvement and the greater the need to save face. Everyone should keep this in mind when seeking resolution, but above all opponents must be allowed to save face. This is particularly critical when it becomes clear one party cannot win a particular argument. The person who allows a graceful retreat accords the opponent the respect that is deserved. This approach usually results in some degree of appreciation from the opponent, which is valuable in reaching a consensus on a resolution and in future encounters.

Focus on interests, not positions. Focus on what is wanted rather than why it is wanted. It is essential to clearly establish what each party wants and how the objectives differ. Spending energy on why each party wants what he or she wants can be a waste of time and an invitation to a psychological melee. In fact, very few people know exactly why they want what they want. Most are not too concerned with their own motivation - for them, it’s simply enough that they want it. The best strategy is to avoid asking and answering queries about motivation and instead concentrate on accomplishing the specific goals of each party.

Hot buttons. Be aware of your “hot buttons” - those words, phrases, mannerisms or approaches that raise your defenses and block listening and objective thinking. When they occur, consciously set them aside. Try to identify the hot buttons of the other party and avoid those trigger points. They may provide immediate gratification but do little to resolve the issue.

Avoid solutions that come too quickly. When an issue is resolved too quickly or a simple but incomplete resolution is agreed to, the negative side effects are usually more painful and damaging in the long run than the original issue itself. Unfinished elements do not go away and will surface later, or
a party who later feels unsatisfied with the resolution will feel free to create future conflict on the same issue. The easiest solution is not always the best one because it tends to treat symptoms and thereby obscure the real problem. Allow enough time for the parties to explore the disagreement and all possible resolutions. As each piece of an agreement is reached, check for other options. Look for any signs of concern and check if all involved can live with it. Abandon ideas - no matter how good you think they are - that receive little commitment or enthusiasm. Search for the second or third “right” answer.

Keep your sense of humor. A conflict can be viewed as serious and grim business. However it’s important that participants not lose their perspectives. One of the best ways to retain perspective is to use positive humor. A well-timed humorous remark (about content not parties involved) is a great way to recognize the humor of the situation. The parties involved may be unable to control their laughter and subsequently may find the conflict has disintegrated. It’s important for participants to remember to take the issues and conflict seriously - not themselves.

A Process for Managing Conflict and Disagreement Constructively. A systematic process for dealing with conflict and disagreement is vital to producing desirable outcomes. Remember to follow these six steps:

1. **Diagnosis:** Identify the root cause of the differences or conflict.
2. **Consider options:** Explore differences and discuss alternatives which meet the goals and objectives of all parties.
3. **Plan:** Select a strategy from the options and create an action plan for implementation. Write out the plan with specific agreements and consequences for not living up to commitments.
4. **Do:** Implement and monitor the plan while maintaining a tone of mutual respect and goodwill.
5. **Check:** Meet again to evaluate the success of the action plan in resolving the conflict and verify the agreement is being honored. Make changes or take corrective action. Reinforce each other’s positive behavior.
6. **Act:** Learn from the experience and apply the process in other conflict or disagreement situations. Continue working on the agreement, action plan and relationship.

Test Your Conflict Management Skills

- Do you view conflict as an opportunity for growth, rather than a contest to win or something to avoid?
- Have you recently questioned or changed a deeply held belief?
- Can you remove yourself at times from a conflict situation, putting yourself in the place of a neutral observer?
- Do you search for cause rather than blame?
- Do you search for common ground more than differences?
- Are you as interested in learning from the other party as you are in making your own views known?
- Do you rely on your own good judgment rather than allowing group loyalty to stand in its way?
- When the other party is talking, do you focus on their needs and concerns rather than your own?
- Do you maintain eye contact with the speaker?
TIPS FOR MANAGING CONFLICT WITH COMFORT (cont’d)

- Do your responses allow open expression of the other party’s view rather than judging them?
- Do you give feedback by asking informational questions and paraphrasing?
- Do you look for clues for agreement or discomfort in the other party’s body language?
- Do you allow - even encourage - the other party to point out your own erroneous assumptions?
- Do you make every effort to hear the other party and establish good will before stating your needs?
- Do you clearly express your own needs?
- Are you sensitive to the best time to meet?
- Do you look for options agreeable to both parties?
- Do you invite the other party to explore other options by asking “What if …?”
- Can you recognize when different conflict modes are being used or could be used?
- Do you establish boundaries - the minimum you can accept and the maximum you can give?
- Do you work with the other party to establish an action plan for mutually established goals and behavior changes?
- Do you check for agreement and understanding on agreed on resolutions?

NEGATIVE VS. POSITIVE CONFLICT

Negative Conflict

- Happens when …
 - It escalates.
 - It leads to hostility and fear.
 - It leads to accusation and threats.
 - Issues proliferate
 - From one to many.
 - Specifics are replaced by general issues.
 - From specific behavior to entire relationship.
 - Concern for self turns into retaliation.
 - Objectivity wanes.
 - Statements become personal attacks.
 - Getting even and hurting others is primary.
 - The number of parties involved increases.
 - Indirect attack and gossip reigns.
 - Factions and cliques form.

Positive Conflict

- Happens when …
 - It is manifested as a symptom of discontent.
 - It produces change for the better.
 - e.g. outdated policies revised:
 - It produces gains, innovations and new ideas.
 - It fosters unity and understanding.
 - You gather information on how to better understand others for future use.
 - It brings about behavior changes.
 - Harmony between what you believe and what you do develops.

From “Dealing with Conflict & Confrontation” by Helga Rhode, Psy.D.
Supplemental Information
SUPPLEMENTAL INFORMATION

SUMMARY
Sample Master Application, p. 87-SI
Sample Supplemental Application, p. 88-SI
Residential Zoning Requirements, p. 89-SI
Setbacks and Required Yards, p. 90-SI
Tree Removal Requirements, p. 91-SI
Fences, Walls, and Hedges, p. 93-SI
Measuring Height Limits, p. 95-SI
Solar Access Height Limitations, p. 96-SI
Calculating Slopes, p. 97-SI
Recycling and Trash Space Allocation, p. 98-SI
Bicycle Parking Tips, p. 99-SI
Visualizing Grading, p. 100-SI
Glossary of Terms, p. 102-SI
Suggested Reading List, p. 109-SI
Other City Design Guidelines, p. 109-SI
SAMPLE MASTER APPLICATION

City of Santa Barbara

MASTER APPLICATION

Project Address: 1000 Hillside Street
APN/Street Segment ID: 014-280-009
Land Use Zone: A-2

Existing Condition/Current Use: Single-family residence

☑ New □ Addition ☐ Remodel □ Repair □ Demol □ Change of Use □ Other

Residential # of Units: 1 □ # of Stories: 1
of Story: 1 □ # of Units: 1 □ # of Stories: 1

BLD/MST/SGN Project Description: Proposed 600 square foot (sq. ft.) addition to the first and second story of an existing one-story 1,200 sq. ft. house with an attached 460 sq. ft. two-car garage. The proposal includes 30 cubic yards of cut and 30 cubic yards of fill outside of the main building footprint, a new 200 sq. ft. deck and remodeling an existing 500 sq. ft. living room into a master bedroom suite.

Proposed Use/Occupancy: □ Construction Valuation:

PBW Project Description:

Valuation:

Name: □ Street Address: □ City, State, Zip:

IMPORTANT: Please check box B next to name of person listed above whom we should contact regarding this application.

☐ Owner of Property: John Doe
Email Address: john.doe@email.com
Phone: 805-555-1111

☐ Applicant:
Email Address:
Phone:

☐ Architect/Designer: John Smith
Email Address: john.smith@email.com
Phone: 805-555-9999

☐ Engineer:
Email Address:
Phone:

☐ Contractor:
Email Address:
Phone:

☐ Tenant/Other Party:
Email Address:
Phone:

Proposed Site:

□ New Commercial Building: sq. ft.
□ New Residential Building: sq. ft.
□ Add: 800 sq. ft.
□ Remodel/Structural Improvement: 500 sq. ft.
□ Garage/Patio Cover: sq. ft.
□ New Deck: 200 sq. ft.
□ New Fencing:
□ New Paving:
□ Grading: □ 20 cu. yds. of cut
□ 30 cu. yds. of fill
□ 20 cu. yds. of fill/15 cu. yds. of cut
□ Other (specify):

Exising Site:

□ Lot: 200 x 100 = 20,000 sq. ft.
□ Main Building: 1,200 sq. ft.
□ Other (specify): sq. ft.

□ Architectural Board Review (ABR)
□ Coastal Act Exemption, Easement or Rec to COC
□ Environmental Review
□ Historical Landmark Commission Review (HLC)
□ General Plan/Development Plan (GDP)
□ Planning Commission Review (PC)
□ Planning Review Team (PRT)
□ Property Profiles (for Commercial Properties)
□ Sign Committee Review
□ Single Family Design Board (SFD)
□ Zoning Board (ZB)
□ Zoning Board (ZB) Other (specify):

PLANNING STAFF USE ONLY

Signature: ____________________________ Date: ____________________________

City of Santa Barbara, Planning Division

City of Santa Barbara SINGLE FAMILY RESIDENCE DESIGN GUIDELINES
City of Santa Barbara
SINGLE FAMILY DESIGN BOARD (SFDB)
RESUBMITTAL COVER SHEET

(For Subsequent Filings Only - Initial Filings Use Master Application)

PROJECT STREET ADDRESS: 123 Residential Street
DATE OF LAST ACTION: 1/22/08
MST #: 2008-0011

Describe Request, Last SFDB Review and Changes Made Since Then:
(Requests will not be accepted without a COMPLETE description of request and changes. Only the changes listed below will be considered for approval.)

Preliminary Approval is requested:
1. Lowered second floor plate height by one foot.
2. Simplified roof forms by eliminating gable end (north).
3. New 20 foot linear retaining wall, 42 inches high, which will include 5 cubic yards of cut and 5 cubic yards of fill.

<table>
<thead>
<tr>
<th>FULL BOARD</th>
<th>CONSENT CALENDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ CONCEPT CONTINUED</td>
<td>☑ CONTINUED</td>
</tr>
<tr>
<td>☑ PRELIMINARY</td>
<td>☑ PRELIMINARY</td>
</tr>
<tr>
<td>☐ IN-PROGRESS</td>
<td>☐ FINAL</td>
</tr>
<tr>
<td>☐ FINAL</td>
<td>☐ REVIEW AFTER FINAL</td>
</tr>
<tr>
<td>☐ REVIEW AFTER FINAL</td>
<td></td>
</tr>
</tbody>
</table>

3 copies of plans required at time of submittal.

DATE: 2/28/08
NAME OF PERSON TO CONTACT: Terry Smith
ADDRESS: 10 Main Street
Santa Barbara, CA
ZIP CODE: 93101
TELEPHONE: 805-968-9999
E-MAIL ADDRESS: tsmith@work.com

Signature of Property Owner/Authorized Agent:

City of Santa Barbara Planning Counter / 630 Garden St. / (805) 564-5578
Page 1 of 1
Residential Zoning Requirements

<table>
<thead>
<tr>
<th>Zone</th>
<th>Maximum height limit</th>
<th>Minimum lot area for newly created lots (sq. ft.)</th>
<th>Required lot frontage for newly created lots</th>
<th>Front setback</th>
<th>Interior setback</th>
<th>Open yard required (sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>30'</td>
<td>43,560</td>
<td>100'</td>
<td>35'</td>
<td>15'</td>
<td>1,250</td>
</tr>
<tr>
<td>A-2</td>
<td>30'</td>
<td>25,000</td>
<td>100'</td>
<td>30'</td>
<td>10'</td>
<td>1,250</td>
</tr>
<tr>
<td>E-1</td>
<td>30'</td>
<td>15,000</td>
<td>90'</td>
<td>30'</td>
<td>10'</td>
<td>1,250</td>
</tr>
<tr>
<td>E-2</td>
<td>30'</td>
<td>10,000</td>
<td>75'</td>
<td>25'</td>
<td>8'</td>
<td>1,250</td>
</tr>
<tr>
<td>E-3</td>
<td>30'</td>
<td>7,500</td>
<td>60'</td>
<td>20'</td>
<td>6'</td>
<td>1,250</td>
</tr>
<tr>
<td>R-1</td>
<td>30'</td>
<td>6,000</td>
<td>60'</td>
<td>Ground floor* Upper floor**</td>
<td>5'</td>
<td>1,250</td>
</tr>
</tbody>
</table>

*Ground floor, not facing street: 15’ **Upper floor, garage facing street: 20’

Notes:

- **Local Coastal Zone (S-D-3)**
 - (See Zoning map for location) All developments within this area are subject to some level of review by the City Staff, Staff Hearing Officer or Planning Commission. Please check with Planning Staff to determine the applicable level of review.

1See SBMC 28.15.083 D 2.b for additional height restrictions related to FAR limitations.
2These minimum lot sizes are increased based on the average slope of the property:
 - between 10% and 20% - 1.5 times minimum lot size
 - between 20% and 30% - 2.0 times minimum lot size
 - over 30% - 3.0 times minimum lot size
3These setbacks apply to both Side and Rear yards.
4Refer to the Zoning Ordinance for additional open yard requirements (SBMC 28.15.060).
SETBACKS AND REQUIRED YARDS

Open Yard: 1250 s.f. required with 20 ft. min. dimension

Interior Setback
Interior Lot Line

Residence

Front Yard
Front Setback

Primary front yard

Secondary front yard

Front Lot Line

Street

Parkway

Sidewalk

Driveway
Tree Removal Requirements

Street Trees in the Public Right-of-Way

Chapter 15.20 of the Municipal Code regulates the placement and removal of trees in the City-owned parkway. The Park Commission has developed a Master Street Tree Plan that designates which trees are allowed in the parkways for the various parts of the City. Although the parkway is usually a planted strip between the street and the sidewalk, there are many places in the City where the parkway strip is between the sidewalk and private property.

The property owner is responsible for the maintenance of any street trees in front of his or her property. Such trees cannot be removed, pruned or trimmed without the approval of the Park Commission. The owner may plant ground cover (grass, low shrubs) in the parkway as long as it does not exceed 8” in height. Placement of any non-growing ground cover such as bark, gravel or concrete and any plants that exceed 8” in height in the parkway must be approved by the Parks Director. As long as any permanent construction is flat, such as placement of concrete in the parkway, no encroachment permits are required by the Public Works Department.

Trees on Approved Landscape Plans

Municipal Code Section 22.11 restricts significant alterations to approved landscape plans and unauthorized tree removal when there are conditions of approval for the development on the lot that require the installation and maintenance of trees in accordance with an approved landscape plan. Such trees may not be removed without SFDB approval and the required permit. Some tree replacements may be considered “substantially similar” and not subject to a permit. See the SFDB General Design Guidelines and Meeting Procedures for more information regarding substantially similar tree replacements.
Trees in the Required Front Yards of Private Property or Designated Historic or Specimen Trees

Chapter 15.24 of the Municipal Code regulates the placement and removal of trees in the front yard and designated historic or specimen trees. Trees that are in the required front yard setbacks of properties (see Residential Zoning Requirements, page 80-SI) or designated historic or specimen trees, cannot be removed without the approval of the Parks and Recreation Commission. In making decisions, the Parks and Recreation Commission takes the following considerations into account:

1. Whether the tree is designated as a historic or specimen tree;
2. The size of the building site in relation to the size of the proposed or existing improvement;
3. The number and size of other trees that would remain upon the building site after the requested removal;
4. The number and location of adjacent trees on City property and the possibility of maintaining desirable tree density in the area through additional planting on City property;
5. Any beneficial effects upon adjacent trees to be expected from the proposed removal;
6. Whether the tree sought to be removed was planted by or with the permission of the applicant or the applicant’s cotenant at the time the tree was planted.

In granting a request for a tree removal, the Parks and Recreation Commission may impose conditions and must make one of the following findings:

1. That the principles of good forest management will best be served by the proposed removal; or
2. That a reasonable and practical development on the property on which the tree is located requires the removal of the tree or trees whose removal is sought; or
3. That the character of the immediate neighborhood in respect to forestation will not be materially affected by the proposed removal; or
4. That topography of the building site renders removal desirable; or
5. That regard for the safety of persons or property dictates the removal.

Removal of Other Trees

In order for the SFDB to approve projects that involve the removal of skyline trees, oak trees or sycamore trees that have a minimum trunk diameter of 4” at a height of 4’ 6” above the ground, the trees must be replaced. Avoidance of tree removal is strongly encouraged. Oak and sycamore trees are considered important resources and should be preserved, if possible. Multiple oak and sycamore tree replacements are generally required for each tree removal. See SBMC 22.10.060 for minimum oak tree replacement ratios in the Hillside Design District. Recommended replacement ratios throughout the city are often 10:1 for oak trees and 3:1 for sycamore trees.
FENCES, WALLS AND HEDGES

1. **Setbacks.** Except as hereinafter provided, in the A, E, R, C-O and C-X Zones, no fence, screen wall or hedge located in the setbacks shall exceed a height of 8’.

2. **Front Lot Line, Side of Driveway.** In the A, E, R, C-O and C-X Zones, no fence, screen wall or hedge exceeding a height of 3-½’ shall be located:
 a. Within 10’ of a front lot line.
 b. Within 10’ of either side of a driveway for a distance of 20’ back from the front lot line. The height limitation concerning driveways also applies where a driveway on an adjacent property is located within 10’ of the junction of any front side lot line.

3. **Corner.** In the A, E, R, C-O, and C-X Zones, no fence, screen wall or hedge located within 50’ of a street corner measured from the edge of the vehicular traveled way as determined by the Traffic Engineer and within the required front yard shall exceed a height of 3-½’; provided that where any fence, screen, wall or hedge within 50’ of any corner impairs the vision of drivers of vehicles approaching on the intersecting street, the Chief of Building and Zoning may further limit the height of construction by the terms of the permit issued to the applicant so as to prevent such impairment of vision.
4. **Alleys.** The City Traffic Engineer may require the height of a fence, screen, wall or hedge to be reduced if the improvement is determined to be a safety hazard.

5. **Separation.** Unless there is horizontal separation of at least 5’ between fences, screens, walls or hedges, the height shall be measured from the lowest point of such fence, screen, wall or hedge to the highest point of either fence, screen, wall or hedge. This includes all fences, screens, walls or hedges within 5’ of the property lines.

6. **Barbed Wire, Sharp Wire or Points.** In any zone, no barbed wire shall be used or maintained in or about the construction of a fence, screen, wall or hedge along the front or interior lines of any lot, or within 3’ of said lines, and no sharp wire or points shall project at the top of any fence or wall less than 6’ in height.

7. **Schools.** Any open mesh type fence to enclose an elementary or high school site may be located and maintained in any required yard.

8. **Nonconforming.** Any fence, screen, wall or hedge which is nonconforming to the provisions of this section and which is legally existing on the effective date of the ordinance adopting the provisions of this section may be continued and maintained, provided there is no physical change other than necessary maintenance and repair in such fence, screen, wall or hedge except as permitted in other sections of this title. (Ord. 4162, 1982; Ord. 3710, 1974; Ord. 3513, 1972.)
Measuring Height Limits

Building Height Limitations

NOTE: The Municipal Code specifies that building height is limited by BOTH the maximum allowable height (30’ in one family and R-2 zones) AND the solar access height limitations, which limit the height of buildings near “northerly” property lines in all residential zones. According to the City Charter, relief from height regulations cannot be granted.

28.04.120 Building Height.

The maximum vertical height of a building or structure at all points measured from natural or finished grade, whichever is lower. Architectural elements that do not add floor area to a building, such as chimneys, vents, antennae and towers, are not considered a part of the height of a building, but all portions of the roof are included in the building height.

To measure the maximum allowed height of the structure, project from natural or finished grade, whichever is lower as shown.
SOLAR ACCESS HEIGHT LIMITATIONS
(Chapter 28.11 of the Municipal Code)

The Municipal Code specifies that building height is limited by BOTH the maximum allowable height (30’ in one family and zones) AND the solar access height limitations. Solar access height limitations limit the height of buildings near “northerly” property lines in all residential zones.

To measure the solar access height:

1. Determine the “northerly” property line(s): The property line that forms a generally north facing boundary of the lot and that has a bearing greater than or equal to forty degrees from either true north or true south.

2. Determine the highest point of contact (base elevation) that the building or structure contacts natural grade.

3. After determining the base elevation, draw a vertical line 12’ above the base grade for one family and R-2 zones.

4. Once the vertical line has been drawn, a line is drawn at thirty degrees from a point directly over the “northerly” property line(s) toward the building or structure. This line may not penetrate any part of the building or structure unless otherwise allowed by this ordinance. Flagpoles, antennae, ornamental spires, chimneys, or other building elements that are less than 4’ along any horizontal dimension may exceed this height limit.
CALCULATING SLOPES

(From Municipal Code Section 28.15.080)

“Average slope” of a parcel of land or any portion thereof shall be computed by applying the formula \(S = \frac{0.00229 \times I \times L}{A} \) to the natural slope of the land, before grading is commenced as determined from a topographic map conforming to National Mapping Standards and having a scale of not less than 1 inch equals 200’ and a contour interval of not less than 5’. The letters in this formula shall have the following significance:

- **S** = The average slope of the land in percent.
- **I** = The contour interval in feet.
- **L** = The combined length of all contours in feet, excluding the length of contours in drainage channels and in natural water courses below the 25 year flood level.
- **A** = The net area of parcel or portion thereof, in acres, after deducting all areas in drainage channels below the 25 year flood level, for which the slope is to be determined. (Ord. 4726, 1991; Ord. 3753, 1975; Ord. 3710, 1974; Ord. 2585, 1957.)

If proof of slope is required in order to show that the slope is less than 20%, the slope must be calculated by a licensed engineer, surveyor or architect unless it is very clear to Planning Staff that the slope of the property and building site is less than 20%.

RECYCLING AND TRASH SPACE ALLOCATION

Provide convenient recycling, greenwaste, and trash disposal.

Indoor Collection. Collection containers for trash and recycling should be located side by side. It is important to allocate adequate indoor space for recycling to be located next to trash in kitchens; roll-out drawers inside cabinet systems work well for this. When chutes are used, locate trash and recycling chutes side by side. Some homeowners with gardens may also wish to allocate space for separate vegetable & fruit waste collection.

Outdoor Collection. Include outdoor areas for trash, recycling, and greenwaste carts or cans on your site plans. Cans will be serviced from their location in the back yard, but carts must be brought to the street by residents and returned to the back yard within 24 hours after pickup. Carts are recommended over cans because they are more space-efficient than cans. Generally, single family residences should not need more than 95 gallons each of trash, recycling, and greenwaste, but large properties can be an exception. Small residences (one or two occupants) may need only 32 gallons of each.
SUPPLEMENTAL INFORMATION

WASTE DISPOSAL PLANNING CONTINUED

Container Locations. Waste containers may not be stored within view of the street. Trash containers must be located to the rear of the house outside of required interior yard setbacks and open space areas (See MC 7.16.060 and 28.87.190). If the containers are located to the rear of the house, but in a side yard area visible to the street, screening the containers from view with fences, hedges or other enclosures is desirable but not required (See MC 7.16.060). Many homeowners prefer to locate trash containers near the kitchen for convenient disposal. For backyard service of cans, the path to the containers should be wide enough for the haulers and free of impediments. Stairs are discouraged, but not prohibited. If cans are located more than 100’ from the street, there is a significant slope, or steep stairs, extra charges may apply to collection. Distance and slope charges do not apply to carts since the residents take them to the curb. Waste containers may be stored closer to the street on properties with long driveways as long as they are on private property, screened from public view by hedges or tasteful enclosures, outside required setbacks, and are easily accessible by the waste haulers.

Container Sizes. Cans are only 32 gallons, but carts come in 32, 64, and 95 gallon sizes.

![Container Sizes Diagram](image)

<table>
<thead>
<tr>
<th>Container Type</th>
<th>Width</th>
<th>Depth</th>
<th>Height</th>
<th>Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 gallon can</td>
<td>25”</td>
<td>25”</td>
<td>27”</td>
<td>3”</td>
</tr>
<tr>
<td>w/ handles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 gallon cart</td>
<td>21”</td>
<td>23”</td>
<td>40”</td>
<td>3”</td>
</tr>
<tr>
<td>64 gallon cart</td>
<td>27”</td>
<td>29”</td>
<td>41”</td>
<td>3”</td>
</tr>
<tr>
<td>95 gallon cart</td>
<td>29”</td>
<td>34”</td>
<td>46”</td>
<td>3”</td>
</tr>
</tbody>
</table>

Waste Storage Area Examples

In the following two example, carts must be accessible along the length noted.

Minimum for three 32-gallon carts:
1’11” wide x 6’3” long = approx. 10 sq. ft.

Minimum for three 95-gallons carts:
3’1” wide x 7’11” long = approx. 20.5 sq. ft.

Compost or worm bins are a suggested green building technique. (See “Santa Barbara BuiltGreen Remodeler Handbook”.)
BICYCLE PARKING TIPS

Homeowners may wish to consider convenient bicycle parking and access in home plans. Economical bicycle transportation in Santa Barbara neighborhoods can provide exercise, ease traffic congestion and keep Santa Barbara’s air fresh. Surveys show that people are more likely to ride bicycles when secure and easily accessible bicycle storage facilities are available. Many homeowners locate bicycle storage in garages and may wish to provide secure bicycle parking options for guests. Following are bicycle parking tips.

In general

Bicycle storage areas should be convenient to the driveway and a home entrance. Each bicycle typically needs 6’ by 2.5’ of parking space. A back-out or maneuvering aisle of at least 5’ between the bicycle parking area and the nearest structure or stored item is recommended. If a rack is installed, 12” of additional clear space on either side of the rack to allow cyclists to reach and operate locking mechanisms is also recommended.

Weather protection

Whenever possible, locate bicycle parking to be protected from rain and wind. Options include large existing overhangs or wide covered walkways, a garage, a storage room in the house, a shed or even a bicycle shelter or locker. Construction of a separate bicycle shelter with a rack may be helpful where garage size, car size or storage in the garage does not allow easy bicycle access.

Avoid motorist conflict

Bicycle and motorist parking separation by a barrier can protect cars from getting scratched as well as prevent damage to bicycles and any bicycle racks. Allow ample maneuvering room for bicycles between cars and garage walls so that cars do not need to be moved for bicycles to be accessed.

Avoid pedestrian conflict

Avoid stairways between a bicycle parking area and the street. Any bike rack (with bicycles locked to it) should be clear of pathways.

Short-term bike parking

Short-term bike parking, if provided (for example, for guests) should be obvious and near the main entrance of the building. From the street, the bike parking area should be in plain view and well lit.
Visualizing Grading

Grading quantities can be visualized by multiplying familiar volumes. Here are some illustrations for reference when visualizing grading quantities.

- **2 Cubic Yard Dumpster**
- **10 Cubic Yard Dump Truck**
- **10 Cubic Yards of Wood Chip Mulch.**
- **20 Cubic Yard Dump Truck**
An illustration of 50 Cubic Yards compared to a 6 foot tall person.
Glossary of Terms

Architectural Board of Review (ABR): A board, authorized by the City Charter, and appointed by City Council to review and approve, conditionally approve or deny projects according to ordinance and based on guidelines related to design.

Architecture, Santa Barbara Style: Santa Barbara’s distinctive architecture is a regional style with a Mediterranean influence. It reflects the City’s historic past and complements its setting in the natural environment. The use of simple building materials, generous landscaping, human scale and soft colors create a comfortable and harmonious ambience.

Articulation: Horizontal and vertical variation in the surface plane of a structure. For example, a cube has no articulation. By adding and subtracting vertical and horizontal elements to or from the cube, a more interesting shape may be achieved. Successful articulation achieves expression of both the function and aesthetics of a structure’s architectural elements.

Accessory Building or Structure: A subordinate building, the use of which is incidental to that of the main building on the same lot. Examples include garages, storage sheds, etc. See Municipal Code for additional information.

Attic: The area located above the ceiling of the top story and below the roof and not usable as habitable or commercial space.

Balcony: A projecting platform on a building, sometimes supported from below, sometimes cantilevered; enclosed with a railing or low wall.

Basement: That floor of a building between floor and ceiling, which is partly below and partly above grade, but so located that the vertical distance from grade to the floor below is less than the vertical distance from grade to ceiling. A basement shall be counted as a story. If the vertical distance of half of the linear exterior building walls from grade to ceiling does not exceed 4’, then 50% of the basement story floor area will not be counted toward the Floor to Lot Area Ratio.

Brinkerhoff Avenue Landmark District: A district intended to preserve and enhance the existing historic architectural character. All new buildings and exterior changes to existing buildings in this district must be designed to be compatible with Victorian and turn of the century era styles, as defined in the Historic Structures Ordinance.

Building: Any structure having a roof supported by columns or walls for the shelter, housing or enclosure of persons, animals or property of any kind.

Building Footprint: The outline of a building on the ground.

Building Height: The maximum vertical height of a building or structure at all points measured from natural grade or finished grade, whichever is lower. Architectural elements that do not add floor area to a building, such as chimneys, vents, antennae, and towers, are not considered a part of the height of a building, but all portions of the roof are included.

Bulk: The qualitative readily visible composition and perceived shape of the structure’s volume, i.e. the design of its architectural composition, shape and scale, including setbacks and stepbacks.

Buttress: A structural element set at an angle to or bonded into a wall which it strengthens or supports the wall.
Cantilever: A beam, girder, truss, or other structural member that projects beyond its supporting wall or beam.

Canyon Effect: When the mass of a two-story or taller structure faces to the mass of an adjacent property’s two-story or taller structure in close proximity. Light, views, air circulation, and visual relief from structures via landscaping in between are usually minimal when there is a strong “canyon effect” present.

Cellar: That portion of a building between floor and ceiling which is wholly or partly below grade (as defined in this chapter) and so located that the vertical distance from grade to the floor below is equal to or greater than the vertical distance from grade to ceiling. A cellar shall not be counted as a story or towards square feet for a Floor to Lot Area Ratio if the vertical distance from grade to ceiling is 4’ or less on all sides.

City Charter: A document approved by the voters of the City that outlines basic City principles and methods of operation. It can only be amended by a vote of the people.

Coastal Zone: The area of the City under the purview of the Local Coastal Plan. Because of its proximity to the Coast, special restrictions are imposed in this area.

Consent Calendar: A portion of the SFDB or ABR agenda where minor projects are first reviewed by a single architect and then approved as a group by the SFDB or ABR. No further discussion is held at the SFDB or ABR meeting. A single meeting is all that is generally required and the applicant is not required to be present at the SFDB or ABR meeting. If the item cannot be approved on the Consent Calendar, the item will be referred for review by the full SFDB or ABR.

Conservation Element: A part of the General Plan that focuses on preservation of natural resources including vegetation, water, open space, views, and historic and other resources.

Court: A defined uncovered space, bounded by walls over three and a half feet in height for more than 75% of the perimeter of the space.

Covered: Sheltered by a structure above such that less than 50% of the horizontal surface of the structure is open to permit the transmission of light and air.

Cut: Material (soil, rock, etc.) that is excavated and either removed from the site or relocated elsewhere on the site. Cut is measured in cubic yards.

Drip Irrigation: An irrigation system designed to eliminate water runoff by watering plants directly at their roots, reducing the amount of water lost through evaporation and overspray.

Elevations: Drawings to scale that show the appearance of the exterior of a building from all sides.

El Pueblo Viejo Landmarks District: A district intended to preserve and enhance Santa Barbara’s historic architectural character. All new buildings and exterior changes to existing buildings in this district must be designed to be compatible with one of several Hispanic architectural styles, as defined in the Historic Structures Ordinance (SBMC Chapter 22.22).

Enclosed: A space fully surrounded by solid exterior walls, pierced only by windows and customary entrance and exit doors.
Fill: Material (soil, rock, etc.) used to raise an existing grade. Such material may come from elsewhere on the site or be imported from an off-site location. Fill is measured in cubic yards.

Flood Zone, 100 Year: The area projected to be flooded during a storm whose intensity is expected to occur once every one hundred years. This is mapped by the Federal Emergency Management Agency in urban areas. These maps are available at the Building Counter at the Community Development Department.

Floor Area, Gross: The area of a structure measured from the outside line of a building, including the area occupied by the surrounding walls, exclusive of vent shafts and courts. This measurement is used most often to determine compliance with Building and Safety regulations.

Floor Area, Net: The area within the surrounding exterior walls of a building or portion thereof, measured from the inside face or exterior walls, exclusive of the area occupied by the surrounding walls, vent shafts and courts. This measurement is used to determine compliance with most Zoning regulations and Floor to Lot Area Ratios.

Floor to Lot Ratio ("FAR"): The ratio of net floor area divided by net lot area. Does not include basements with less than a 5’ grade to ceiling height.

Foundation, Exposed: That portion of the underlying base or support for a building which is exposed above grade.

General Plan: A document, required by the State, that outlines development goals and policies for Land Use, Circulation (transportation), Housing, Open Space, Safety, Noise and Conservation.

Grade, Finished: The revised topography that results from proposed construction, cut or fill.

Grade, Natural: The existing grade prior to construction, cut or fill on the property, not including any illegal grading.

Guidelines: A statement of how to implement policies or goals. Guidelines are designed to provide direction to hearing bodies and the public as a whole; they are not intended to be binding in nature. Although failure to meet guidelines can form a basis for denial of a project, non-compliance with guidelines is not grounds to invalidate any action of a hearing body.

High Fire Hazard Area: Areas defined by the City Fire Department as being particularly susceptible to wild fire and subject to special construction, clearing and landscaping requirements. This map is available at the Building Counter at the Community Development Department.

Hillside Design District: An area defined by the City that is generally greater than 20% in slope and is subject to review by the SFDB or ABR. See Map, page 39-H.

Hillside Housing: Housing that is within the Hillside Design District.

Historic Landmarks Commission: A nine member committee, authorized by the City Charter, and appointed by City Council to review and approve, conditionally approve or deny projects according to ordinance and based on guidelines such as El Pueblo Viejo Design Guidelines.
Human Scale: A scale that is comfortable and relates proportionately to human size. In the USA, the average man is approximately 5'9” and the average woman is approximately 5’3”. The people shown in this document help the reader to relate the homes shown to a human scale.

Infill Housing: Housing that is in existing neighborhoods other than in the Hillside Design District.

Immediate Neighborhood: Smaller than the neighborhoods defined in the Land Use Element of the General Plan and defined by qualitative aspects such as:

- Similar zoning
- Properties built as part of the same original subdivision
- Common access routes
- Walkable radius (15 minutes, usually one quarter mile)
- Similar architectural styles
- Similar tree and landscaping patterns
- Main streets, bridges or railroad corridors as a boundary

Also, it should be noted that highly visible properties, such as those in hillside areas, can have a sphere of influence beyond their immediate neighborhood.

Lighting, Directional: Lighting that is designed to be focused on a particular area or object rather than to illuminate an entire area.

Lot: A parcel of land shown with a separate and distinct number on a plot or map recorded or filed with the Recorder of the County or a parcel of land held under separate ownership.

Lot Area, Net: The total area of a parcel, excluding recorded public right-of-way easements.

Lot Line, Front: The property line or lines dividing a lot from a street or right of way (r.o.w). On a corner lot and/or a through lot, all street lines shall be considered to be front lot lines.

Lot Line, Interior: Any lot line other than front lot lines.

Manufactured home. The definition used for “manufactured home” shall be as it appears in the California Health and Safety Code at the time these guidelines are applied to a project. As of April 2007, the definition in the California Health and Safety Code is as follows, check the California Code for further updates: A structure, transportable in one or more sections, which, in the traveling mode, is eight body feet or more in width, or 40 body feet or more in length, or, when erected on site, is 320 or more square feet, and which is built on a permanent chassis and designed to be used as a dwelling with or without a permanent foundation when connected to the required utilities, and includes the plumbing, heating, air conditioning, and electrical systems contained therein; except that such term shall include any structure which meets all the requirements of this paragraph except the size requirements and with respect to which the manufacturer voluntarily files a certification and complies with the standards established under this part. “Manufactured home” includes a mobile home subject to the National Manufactured Housing Construction and Safety Act of 1974 (42 U.S.C., Sec. 5401, et seq.).

Massing: The arrangement of the structure’s bulk, including relative openness and solidity.
Mission Area Design District: An area defined by the City that is within 1000’ of Part II of El Pueblo Viejo Landmark District (around the Santa Barbara Mission) and is subject to special design review so as to maintain compatibility with the existing neighborhood and the Mission.

Modification: A limited waiver from specific requirements of the zoning ordinance. Modification requests are subject to public hearing and may only be granted under special circumstances supporting required findings.

Neighborhood: See delineations of 32 official neighborhoods in the Land Use Element of the City’s General Plan according to shared factors of influence, identification, and composition sufficient to form subunits that lend themselves to analysis and discussion as individual entities.

Neighborhood Compatibility: In neighborhoods that possess examples of distinctive architecture, new structures and additions should present a harmonious character so as not to clash or exhibit discord with the particular surrounding neighborhood. Structures and additions should be consistent with the elements that distinguish their particular neighborhood. These elements include, but are not limited to, a sense of mass, scale, roof lines, colors, textures, materials, and maintenance of the existing setbacks and patterns of development in the particular neighborhood. In neighborhoods that do not possess examples of distinctive architecture, the SFDB encourages new structures and additions that lead the neighborhood toward styles harmonious with Santa Barbara’s distinctive architecture.

Neighborhood Study Area: The twenty (20) closest parcels to a proposed project. Additional parcels may be considered in making a compatibility determination depending on the predominant streetscape, patterns of development or parcel sizes.

Natural Colors: Colors that generally blend into the natural surroundings or are earth tone colors appropriate to the area.

Permeability: The ability of landscaping and building materials to allow water to pass through the ground rather than “run off” a property. A property with a high percentage of landscaped versus built and paved areas would have significant permeability. A property almost entirely covered with structures and paving would have very low permeability. Soil, gravel, porous paving and paving spaced with openings and cracks all allow for water passage.

Pilaster: A pier or pillar incorporated into a wall, often with capital and base; or a vertical decorative feature that imitates engaged piers but is not a supporting structure.

Plate Height: Distance from slab or floor sheathing to top of wall.

Planning Commission: A seven member commission authorized by the City Charter and appointed by City Council to review and approve, conditionally approve or deny projects based on Zoning and Subdivision Ordinance Requirements. The Planning Commission also advises the City Council on changes to the Municipal Code, issues related to the General Plan and other development policies of the City.

Plants, Drought Tolerant: Plants that require no more than 12 inches of water per square foot of planted area per year.
Plants, Fire Retardant: Plants that help to slow down fire because of their water content or other attributes that do not allow the plant to catch fire easily.

Policies: Specific statements that implement goals and guide decision-making. Policies indicate a clear commitment by the local legislative body. Policies are based on Comprehensive Plan goals.

Reflective Materials: Exterior building materials that have a shiny, glossy metallic or mirrorlike finish.

Retaining Wall: A wall higher than 42” designed to retain earth.

Ridgeline Development: Development on a hilltop which, when viewed from most areas of Santa Barbara, has a backdrop of the Santa Ynez Mountain Range behind the development. For example, homes on the Riviera.

Ridgeline, Topographic: The top of any visually prominent hill.

Roof Pitch: The slope of a roof, usually expressed as a ratio of vertical rise to the horizontal run: e.g., 4 (feet of rise) in 12 (feet of run), 4:12.

Scale: Building elements and details as they proportionally relate to each other and to humans.

Setback, Front: An area between the front lot line and a line parallel to the front lot line bounded by the interior lot lines of the lot that are roughly perpendicular to the front lot line, the depth of such area being the distance required by the Zoning Ordinance.

Setback, Interior: An area between an interior lot line and a line parallel to the interior lot line bounded by the two lot lines adjacent to the interior lot line from which the setback is measured, the depth of such area being the distance required by the Zoning Ordinance.

Skyline Development: Development on a hilltop which, when viewed from most areas of Santa Barbara, has a backdrop of sky behind the development. For example, some homes in Alta Mesa neighborhood would (“TV Hill”) would be considered skyline development.

Single Family Design Board (SFDB): A seven member board, authorized by the City Municipal Code, and appointed by City Council to review and approve, conditionally approve or deny projects according to ordinance and based on guidelines and required findings related to design.
Site Plan: A plan of a parcel or construction site showing the position and dimensions of the building to be erected and the dimensions and contours of the lot. It also includes other information outlined in handouts available at the Planning and Zoning Counter at the Community Development Department.

Stepback: A “jog” in a building’s façade away from the property line as a structure increases in height. For example, a structure with a first floor setback of 20’ and a second floor setback of 30’ would have a 10’ “stepback”.

Streetscape: The visual appearance of the neighborhood as seen from the street.

Structure: Anything constructed or erected and the use of which requires more or less permanent location or attachment to something having a permanent location on the ground.

Topography: The configuration and shape of the land.

Translucent Window: A window that diffuses light in or out so that no images can be seen.

Tree, Deciduous: A tree that drops its leaves during the fall and grows new ones during the spring.

Tree, Evergreen: A tree that retains its leaves year round.

Tree, Historic: A tree that is designated by the City Council as having historic importance to the City.

Tree, Landmark: A tree that is designated by the City Council, upon recommendation by the Historic Landmarks Commission, as having historic importance to the City, Region or State.

Tree, Skyline: A tree that is 50 feet in height or greater and has a width that is less than its height.

Tree, Specimen: An unusually large and healthy example of a native tree or of a tree not native to this area. Particularly important Specimen Trees may be so designated by the City Council.

Underfloor: Area underneath the first floor of a building.

Volume: A structure’s quantitative measurement of height, width and depth.

Yard: A yard is an open space, on a lot or parcel of land, unoccupied and unobstructed from the ground upward, except as otherwise provided by the Municipal Code.

Yard, Open: A required yard, the purpose of which is to provide usable outdoor living space and/or visual open space.

Yard, Primary Front: A front yard, on a lot with multiple front yards, designated by the property owner and approved by the Community Development Director or the Director’s designee as the primary front yard. All other front yards on the lot shall be secondary front yards.

Yard, Remaining Front: The area of the front yard outside the required front setback.

Yard, Secondary Front: Any front yard on a lot with multiple front yards that is not designated as the primary front yard.

Zoning: Municipal codes regulating the use and development of property. The zoning ordinance divides the city into land use districts or “zones”, illustrated on zoning maps, and specifies the allowable uses within each zone. It establishes development standards such as minimum lot size, maximum structure height, building setbacks, and yard size.
SUGGESTED ADDITIONAL READING LIST

Santa Barbara Municipal Code: Chapters 22, 26, 27, 28 and 29 (Zoning Ordinances), City of Santa Barbara Clerk’s Office.

Built Green Santa Barbara Remodeler Handbook by BuiltGreen Santa Barbara

OTHER CITY OF SANTA BARBARA GUIDELINES

Airport Design Guidelines
Architectural Board of Review Guidelines
Chapala Street Design Guidelines
El Pueblo Viejo Design Guidelines
Haley-Milpas Design Manual
High Fire Hazard Landscape Standards
Lower Riviera Special Design District Guidelines
Outdoor Lighting Design Guidelines
Outdoor Vending Machine Design Guidelines
Sign Review Guidelines
Solar Energy Systems Design Guidelines
State Street Landscaping Guidelines
Upper State Street Area Design Guidelines
Urban Design Guidelines
Waterfront Area Design Guidelines
Wireless Communication Facilities/Antenna Design Guidelines

Coming in the future….

Special Design/Historic District Guidelines
Multi-Family Design Guidelines