

4.2 Air Quality

This section describes the existing environmental conditions and regulatory setting for air quality in the city and assesses the potential impacts the Housing Plan could have on air quality standards and implementation of the local air quality plan.

4.2.1 Environmental Setting

a. Climate and Meteorology

The City of Santa Barbara is located in the South Central Coast Air Basin (SCCAB), which includes San Luis Obispo, Santa Barbara, and Ventura counties. The Santa Barbara County portion of the SCCAB is under the jurisdiction of the Santa Barbara County Air Pollution Control District (SBCAPCD).

Geographic features that influence Santa Barbara's air quality include the Santa Barbara Channel (Pacific Ocean) to the south, and the east-west trending Santa Ynez Mountains to the north, with elevations up to 4,707 feet. The regional climate in the SCCAB is Mediterranean and is characterized by warm summers and mild winters with relatively dry weather. The annual precipitation is 17.7 inches on average, with most (95 percent) occurring during the rainy season, which generally spans October through April. The warmest month is August, and the coolest month is January (Western Regional Climate Center 2016).

An additional meteorological feature that influences Santa Barbara's climate is the semi-permanent subtropical high-pressure cell off the Pacific Coast. This cell creates the typical warm, dry summers and wet winters. Fog is frequently experienced in the city due to the humid marine air coming into contact with the warmer air over land. Fog typically occurs in the early morning or evening, particularly during late spring and early summer. Inversions, or the trapping of a stable layer of cool air below warmer air, caused in part by the Santa Ynez Mountains to the north of the City, can negatively affect air quality, due to reduced vertical mixing. An inversion essentially creates a cap over the city, reducing the dispersion of pollutants into the upper atmosphere (vertically) or across air basins (horizontally). Surface and upper-level wind flows vary seasonally and geographically, and lack of wind and the right meteorological conditions can lead to an inversion. Surface temperature inversions occur between 0 and 500 feet above the ground surface, and are most common during the winter. Subsidence inversions (1,000 to 2,000 feet above ground surface) are most common during the summer.

Wind patterns can link Santa Barbara and Ventura counties with the more polluted air of the South Coast Air Basin (Los Angeles area). Air pollutants generated in the South Coast Air Basin can be blown offshore then carried to other coastal cities such as Santa Barbara. In addition, some pollution is transported from the San Fernando Valley to Ventura County, then into Santa Barbara. The prevailing winds passing through the City do not increase ground-level ozone (smog), and generally serve to transport pollutants offshore. However, atypical wind flow patterns can transport pollutants generated in other areas, such as Los Angeles, into the SCCAB (City of Santa Barbara 2010).

b. Sources of Air Pollution

Air pollutant emissions in the SCCAB are generated primarily by stationary and mobile sources. Stationary sources can be divided into two major subcategories:

- Point sources occur at a specific location and are often identified by an exhaust vent or stack. Examples include boilers or combustion equipment that produce electricity or generate heat.
- Area sources are widely distributed and include such sources as residential and commercial water heaters, painting operations, lawn mowers, agricultural fields, landfills, and some consumer products.

Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and can also be divided into two major subcategories:

- On-road sources consist of legally operated vehicles on roadways and highways.
- Off-road sources include aircraft, ships, trains, and self-propelled construction equipment.

Air pollutants can also be generated by the natural environment, such as when high winds suspend fine dust particles or when wildfires generate smoke containing particulate matter.

c. Air Pollutants of Primary Concern

The federal and state Clean Air Acts (CAA) mandate the control and reduction of certain air pollutants. Under these laws, the U.S. Environmental Protection Agency (USEPA) and the California Air Resources Board (CARB) have established the National Ambient Air Quality Standards (NAAQS) and the California Ambient Air Quality Standards (CAAQS) for “criteria pollutants” and other pollutants. Some pollutants are emitted directly from a source (e.g., vehicle tailpipe, an exhaust stack of a factory, etc.) into the atmosphere, including carbon monoxide, reactive organic compounds (ROC)/reactive organic gases (ROG),¹ nitrogen oxides (NO_x), particulate matter with diameters of up to ten microns (PM₁₀) and up to 2.5 microns (PM_{2.5}), sulfur dioxide (SO₂), and lead. Other pollutants are created indirectly through chemical reactions in the atmosphere, such as ozone, which is created by atmospheric chemical and photochemical reactions primarily between ROC and NO_x. Secondary pollutants include oxidants, ozone, and sulfate and nitrate particulates (smog). The characteristics, sources and effects of criteria pollutants are discussed in the following subsections. The following subsections describe the characteristics, sources, and health and atmospheric effects of air pollutants of primary concern.

Ozone

Ozone is produced by a photochemical reaction (triggered by sunlight) between NO_x and ROC/ROG are composed of non-methane hydrocarbons (with some specific exclusions), and NO_x is composed of different chemical combinations of nitrogen and oxygen, mainly nitric oxide and nitrogen dioxide. NO_x are formed during the combustion of fuels, while ROC are formed during combustion and evaporation of organic solvents. As a highly reactive molecule, ozone readily combines with many different components of the atmosphere. Consequently, high levels of ozone tend to exist only while high ROC and NO_x levels along with abundant sunshine are present to sustain the ozone formation process. Once the precursors have been depleted, ozone levels rapidly decline. Because these reactions occur on a regional rather than local scale, ozone is considered a regional pollutant. In addition, because ozone requires sunlight to form, it mostly occurs in concentrations considered serious between the months of April and October. Ozone is a pungent, colorless, toxic gas with

¹ CARB defines ROC and ROG similarly as, “any compound of carbon excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate,” with the exception that ROC are compounds that participate in atmospheric photochemical reactions. For the purposes of this analysis, ROG and ROC are considered comparable in terms of mass emissions, and the term ROC is used in this EIR.

direct health effects on humans, including changes in breathing patterns, reduction of breathing capacity, increased susceptibility to infections, inflammation of lung tissue, and some immunological changes (USEPA 2022a). Groups most sensitive to ozone include children, the elderly, people with respiratory disorders, and people who exercise strenuously outdoors.

Carbon Monoxide

Carbon monoxide is a localized pollutant that is found in high concentrations only near its source. The major source of carbon monoxide, a colorless, odorless, poisonous gas, is the incomplete combustion of petroleum fuels by automobile traffic. Therefore, elevated concentrations are usually found only near areas of high traffic volumes. Other sources of carbon monoxide include the incomplete combustion of petroleum fuels at power plants and fuel combustion from wood stoves and fireplaces during the winter. The health effects of carbon monoxide are related to its affinity for hemoglobin in the blood. Carbon monoxide causes a number of health problems, including aggravation of some heart diseases (e.g., angina), reduced tolerance for exercise, impaired mental function, and impaired fetal development. At high levels of exposure, carbon monoxide reduces the amount of oxygen in the blood, leading to mortality (USEPA 2022b). Carbon monoxide tends to dissipate rapidly into the atmosphere; consequently, violations of the NAAQS and/or CAAQS for carbon monoxide are generally associated with localized carbon monoxide “hotspots” that can occur at major roadway intersections during heavy peak-hour traffic conditions.

Nitrogen Dioxide

Nitrogen dioxide is a by-product of fuel combustion; the primary sources are motor vehicles and industrial boilers and furnaces. The principal form of NO_x produced by combustion is nitric oxide, but nitric oxide reacts rapidly with the oxygen in the air to form nitrogen dioxide, creating the mixture of nitric oxide and nitrogen dioxide commonly called NO_x. Nitrogen dioxide is an acute irritant that can aggravate respiratory illnesses and symptoms, particularly in sensitive groups (SCAQMD 1993 and 2005; USEPA 2021). A relationship between nitrogen dioxide and chronic pulmonary fibrosis may exist, and an increase in bronchitis in young children at concentrations below 0.3 parts per million (ppm) may occur. Nitrogen dioxide absorbs blue light, gives a reddish-brown cast to the atmosphere, and reduces visibility (USEPA 2022c). It can also contribute to the formation of PM₁₀ and acid rain.

Sulfur Dioxide

Sulfur dioxide is included in a group of highly reactive gases known as “oxides of sulfur.” The largest sources of sulfur dioxide emissions are from fossil fuel combustion at power plants (73 percent) and other industrial facilities (20 percent). Smaller sources of sulfur dioxide emissions include industrial processes such as extracting metal from ore and the burning of fuels with a high sulfur content by locomotives, large ships, and off-road equipment. Sulfur dioxide is linked to a number of adverse effects on the respiratory system, including aggravation of respiratory diseases, such as asthma and emphysema, and reduced lung function (USEPA 2022d).

Particulate Matter

Suspended atmospheric PM₁₀ and PM_{2.5} is comprised of finely divided solids and liquids such as dust, soot, aerosols, fumes, and mists. Both PM₁₀ and PM_{2.5} are directly emitted into the atmosphere as by-products of fuel combustion and wind erosion of soil and unpaved roads. Particulate matter is also created in the atmosphere through chemical reactions. The characteristics,

sources, and potential health effects associated with PM₁₀ and PM_{2.5} can be very different. PM₁₀ is generally associated with dust mobilized by wind and vehicles while PM_{2.5} is generally associated with combustion processes as well as formation in the atmosphere as a secondary pollutant through chemical reactions. Due to its small size, PM_{2.5} is more likely to penetrate deeply into the lungs and poses a health threat to all groups, but particularly to the elderly, children, and those with respiratory problems (CARB 2020a). More than half of PM_{2.5} that is inhaled into the lungs remains there. These materials can damage health by interfering with the body's mechanisms for clearing the respiratory tract or by acting as carriers of an absorbed toxic substance. Suspended particulates can also reduce lung function, aggravate respiratory and cardiovascular diseases, increase mortality rates, and reduce lung function growth in children (CARB 2022a).

Lead

Lead is a metal found naturally in the environment, as well as in manufacturing products. The major sources of lead emissions historically have been mobile and industrial sources. However, as a result of the USEPA's regulatory efforts to remove lead from gasoline, atmospheric lead concentrations have declined substantially over the past several decades. The most dramatic reductions in lead emissions occurred prior to 1990 due to the removal of lead from gasoline sold for most highway vehicles. Lead emissions were further reduced substantially between 1990 and 2008, with reductions occurring in the metals industries at least in part as a result of national emissions standards for hazardous air pollutants (USEPA 2013). As a result of phasing out leaded gasoline, metal processing currently remains the primary source of lead emissions. The highest level of lead in the air is generally found near lead smelters. Other stationary sources include waste incinerators, utilities, and lead-acid battery manufacturers. The health impacts of lead include behavioral and hearing disabilities in children and nervous system impairment (USEPA 2022).

Toxic Air Contaminants

Toxic air contaminants (TACs) are a diverse group of air pollutants that may cause or contribute to an increase in deaths or serious illness, or that may pose a present or potential hazard to human health. TACs include both organic and inorganic chemical substances that may be emitted from a variety of common sources, including gasoline stations, motor vehicles, dry cleaners, industrial operations, painting operations, and research and teaching facilities. One of the main sources of TACs in California is diesel engine exhaust that contains solid material known as diesel particulate matter (DPM). More than 90 percent of DPM is less than one micron in diameter (about 1/70th the diameter of a human hair) and thus is a subset of PM_{2.5}. Because of their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lungs (CARB 2022b). Particulate matter emitted from diesel engines contributes more than 70 percent of the air emission cancer risk associated with the on-road heavy-duty sector within the SCAB (SCAQMD 2017).

TACs are different than criteria pollutants because ambient air quality standards have not been established for TACs. TACs occurring at extremely low levels may still cause health effects and it is typically difficult to identify levels of exposure that do not produce adverse health effects. TAC impacts are described by carcinogenic risk and by chronic (i.e., long duration) and acute (i.e., severe but of short duration) adverse effects on human health.

d. Current Air Quality

The Santa Barbara County portion of the SCCAB is designated nonattainment for the CAAQS for ozone and PM₁₀. The SBCAPCD operates a network of air quality monitoring stations throughout the SCCAB. The purpose of the monitoring stations is to measure ambient concentrations of pollutants and determine whether ambient air quality meets the NAAQS and CAAQS. There is one monitoring station within the City, located at 700 East Canon Perdido Street. However, NO₂ and SO₂ data is not available from the 700 East Canon Perdido Street monitoring station; therefore, data for these pollutants has been taken from the next closest available monitoring stations, which are the Carpinteria-Gobernador Road station for NO₂ located ten miles east of the City and the Lompoc-H Street station located 40 miles west of the City. No data was available for CO or lead at any monitoring sites within the SCCAB.

Table 4.2-1 summarizes the representative annual air quality data for all criteria pollutants for the nearest local monitoring stations using available data for 2019 through 2021. As shown in Table 4.2-1, the eight-hour ozone CAAQS and NAAQS were exceeded in 2021. Daily exceedances of the CAAQS for PM₁₀ occurred in 2021, 2022, and 2023. All other CAAQS and NAAQS were not exceeded at these monitoring stations from 2021-2023.

Table 4.2-1 Annual Ambient Air Quality Data

Pollutant	2021	2022	2023
Ozone (ppm), Worst 1-Hour ¹	0.082	0.077	0.071
Number of days above CAAQS (>0.09 ppm)	0	0	0
Number of days above NAAQS (>0.12 ppm)	0	0	0
Ozone (ppm), Worst 8-Hour Average ¹	0.072	0.069	0.068
Number of days above CAAQS (>0.070 ppm)	1	0	0
Number of days above NAAQS (>0.070 ppm)	1	0	0
Carbon Monoxide (ppm), Highest 8-Hour Average	*	*	*
Number of days above CAAQS or NAAQS (>9.0 ppm)	*	*	*
Nitrogen Dioxide (ppm), Worst 1-Hour ¹	0.062	0.024	0.034
Number of days above CAAQS (>0.180 ppm)	0	0	0
Number of days above NAAQS (>0.100 ppm)	0	0	0
Sulfur Dioxide (ppm), Worst Hour ¹	0.005	0.036	0.002
Number of days above CAAQS (>0.25 ppm)	0	0	0
Number of days above NAAQS (>0.075 ppm)	0	0	0
Particulate Matter ≤10 microns (mg/m ³), Worst 24 Hours ¹	73	73	108
Number of days above CAAQS (>50 mg/m ³)	*	*	*
Number of days above NAAQS (>150 mg/m ³)	*	*	*
Particulate Matter ≤2.5 microns (mg/m ³), Worst 24 Hours ¹	20.2	20.7	32.6
Number of days above NAAQS (>35 mg/m ³)	0	0	0

Pollutant	2021	2022	2023
Lead (mg/m ³), 3-Month Average	*	*	*
Number of days above NAAQS (>0.15 mg/m ³)	*	*	*

ppm = parts per million; $\mu\text{g}/\text{m}^3$ = micrograms per cubic meter; CAAQS = California Ambient Air Quality Standard; NAAQS = National Ambient Air Quality Standard

Note: The ambient air quality data presented in this table is intended to be representative of existing conditions and is not a comprehensive summary of all monitoring efforts for all the CAAQS and NAAQS. Additional ambient air quality data can be accessed at <https://www.epa.gov/outdoor-air-quality-data/monitor-values-report>.

¹ Data presented represents the worst measurement of the five air quality monitoring stations in Santa Barbara County utilized by USEPA.

* Insufficient data to determine value.

Source: CARB 2025 and USEPA 2025

e. Sensitive Receptors

The NAAQs and CAAQS were established to represent the levels of air quality considered sufficient to protect public health and welfare with an adequate margin of safety. They are designed to protect that segment of the public most susceptible to respiratory distress as a result of poor air quality, such as children under 14, persons over 65, persons engaged in strenuous work or exercise, and people with pre-existing cardiovascular and chronic respiratory diseases. Locations of sensitive receptors include schools, parks and playgrounds, hospitals, day cares, assisted living facilities, and residential communities (CARB 2005). Federal, state, and local regulations, including land use plans, can influence the proximity to which a sensitive receptor can be located near a significant source of air pollution.

Sensitive receptors are located throughout the city, and some are located near existing stationary sources. For example, residential areas west of Milpas Street, south of Cota Street, and east of State Street are interspersed with auto body shops, gas stations, and businesses that use solvents. In addition, land uses in the lower State Street area south of Sola Street features a high density of internal combustion engines, surface coating operations, and other sources of air pollution. The area north of the Santa Barbara Airport also has a high density of facilities using solvents, internal combustion engines, and other sources of air pollution. However, such heavy commercial and light industrial uses are regulated by SBCAPCD permits to minimize emissions and reduce potential for such conflicts. City building codes also provide for separation between residential and non-residential uses where new permits are considered.

CARB's *Strategies to Reduce Air Pollution Exposure Near High-Volume Roadways* (2017) suggests that sensitive receptors located within 1,000 feet could be adversely impacted by poor air quality. CARB recommends strategies to reduce exposure to diesel particulates, including the use of indoor filtration systems (CARB 2017). SBCAPCD's *Scope and Content of Air Quality Sections in Environmental Documents* (2022) provides recommendations regarding the siting of new sensitive land uses near potential sources of air toxic emissions (e.g., freeways, distribution centers, rail yards, ports, refineries, chrome plating facilities, dry cleaners, and gasoline dispensing facilities). SBCAPCD recommends policies which require designing residential projects to orient sensitive receptors 500 feet away from the freeway to reduce potential health impacts (SBCAPCD 2022a).

4.2.2 Regulatory Setting

a. Federal Regulations

Federal Clean Air Act

The Federal CAA governs air quality in the United States. The CAA is administered by USEPA at the federal level, CARB at the state level, and by the Air Quality Management Districts at the regional and local levels. The CAA of 1970 and the CAA Amendments of 1971 required the USEPA to establish the NAAQS, with states retaining the option to adopt more stringent standards or to include other specific pollutants. On April 2, 2007, the Supreme Court found that CO₂ is an air pollutant covered by the CAA; however, no NAAQS have been established for CO₂.

The USEPA is responsible for enforcing the federal CAA. The USEPA is also responsible for establishing NAAQS. NAAQS are required under the 1977 CAA and subsequent amendments. The USEPA regulates emission sources that are under the exclusive authority of the federal government, such as aircraft, ships, and certain types of locomotives. The agency has jurisdiction over emission sources outside state waters (e.g., beyond the outer continental shelf) and establishes various emission standards, including those for vehicles sold in states other than California. Automobiles sold in California must meet the stricter emission standards established by CARB.

Construction Equipment Fuel Efficiency Standard

The USEPA sets emission standards for construction equipment. The first federal standards (Tier 1) were adopted in 1994 for all off-road engines over 50 horsepower (hp) and were phased in by 2000. A new standard was adopted in 1998 that introduced Tier 1 for all equipment below 50 hp and established the Tier 2 and Tier 3 standards. The Tier 2 and Tier 3 standards were phased in by 2008 for all equipment. The current iteration of emissions standards for construction equipment are the Tier 4 efficiency requirements, which are contained in 40 Code of Federal Regulations Parts 1039, 1065, and 1068 (originally adopted in 69 Federal Register 38958 [June 29, 2004], and most recently updated in 2014 [79 Federal Register 46356]). Emissions requirements for new off-road Tier 4 vehicles were completely phased in by the end of 2015.

b. State Regulations

California Clean Air Act

The California CAA allows the state to adopt ambient air quality standards and other regulations provided that they are at least as stringent as federal standards. CARB, a part of the California Environmental Protection Agency (CalEPA), is responsible for the coordination and administration of both federal and state air pollution control programs within California, including setting the CAAQS. CARB also conducts research, compiles emission inventories, develops suggested control measures, and provides oversight of local programs. CARB establishes emissions standards for motor vehicles sold in California, consumer products (such as hairspray, aerosol paints, and barbecue lighter fluid), and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions. CARB also has primary responsibility for the development of California's State Implementation Plan (SIP), for which it works closely with the federal government and the local air districts.

c. Local Regulations

SBCAPCD 2022 Ozone Plan

As the local air quality management agency, the SBCAPCD is required to monitor air pollutant levels to ensure that state and federal air quality standards are met and, if they are not met, to develop strategies to meet the standards. Depending on whether the standards are met or exceeded, the SCCAB is classified as being in “attainment” or “nonattainment.” In areas designated as non-attainment for one or more air pollutants, a cumulative air quality impact exists for those air pollutants, and the human health impacts described in Section 4.2.1 (c), *Air Pollutants of Primary Concern*, are already occurring in that area as part of the environmental baseline condition.

Under State law, air districts are required to prepare a plan for air quality improvement for pollutants for which the district is in non-compliance. The *2001 Clean Air Plan* (2002) was the first plan prepared by SBCAPCD and established specific planning requirements to maintain the State one-hour ozone standard. In 2006, CARB revised the CAAQS and added an 8-hour average to the ozone standard. Both components of the standard must now be met before CARB can designate an area to be in attainment. The current *2022 Ozone Plan* was adopted by SBCAPCD in December 2022 and is the tenth update to the *2001 Clean Air Plan*. The *2022 Ozone Plan* addresses SBCAPCD’s progress toward attaining the federal and state ozone standard. As with prior updates, the 2022 update includes an evaluation of feasible reduction measures for stationary sources and considers numerous factors such as technology advancements, efficiency measures, cost-effectiveness, and the successful implementation of measures at other California air districts. All of the control measures that were found to be feasible in prior ozone plan updates have been implemented (SBCAPCD 2022b).

City of Santa Barbara General Plan

Policies and actions pertaining to air quality and included in the Land Use and Circulation Elements are as follows (City of Santa Barbara 2011):

Land Use Element

- **Policy LG4: Principles for Development.** Establish the following Principles for Development to focus growth, encourage a mix of land uses, strengthen mobility options and promote healthy active living:
 - **Focus Growth.** Encourage workforce and affordable housing within a quarter mile of frequent transit service and commercial services through smaller units and increased density, transit resources, parking demand standards, targeted infrastructure improvements, and increased public areas and open space. Incorporate ideas as a result of an employee survey.
 - **Mix of Land Uses.** Encourage a mix of land uses, particularly in the Downtown to maintain its strength as a viable commercial center, to include retail, office, restaurant, residential, institutional, financial and cultural arts, encourage easy access to basic needs such as groceries, drug stores, community services, recreation, and public space.
 - **Mobility and Active Living.** Link mixed-use development with main transit lines; promote active living by encouraging compact, vibrant, walkable places; encourage the use of bicycles; and reduce the need for residential parking.

- **Policy LG6: Location of Residential Growth.** Encourage new residential units in multi-family and commercial areas of the city with the highest densities to be located in the Downtown, La Cumbre Plaza/Five Points area and along Milpas Street.

Circulation Element

- **Policy C1: Transportation Infrastructure Enhancement and Preservation.** Assess the current and potential demand for alternative transportation and where warranted increase the availability and attractiveness of alternative transportation by improving related infrastructure and facilities without reducing vehicle access.
- Possible Implementation Actions to be Considered
 - **Action C1.1: Pedestrian and Bicycle Infrastructure.** Emphasize high quality public right-of-way infrastructure to include enhanced pedestrian and bicycle facilities.
 - **Action C1.2: Personal Transportation.** In partnership with private interests, promote and provide incentives including the provision of funding, for shared-cost personal transportation options such as car-sharing and bike-sharing to increase personal mobility, reduce air pollution and greenhouse gas emissions, reduce parking demand, and decrease cost of transportation to individuals.
 - **Action C1.3: Intermodal Connections.** Improve intermodal connections for public transit, car pools, carshare or bikeshare programs, bicycle, and pedestrian routes. Provide intermodal connectivity at transit accessible centers, including the train depot, to support sustainable commute options such as feeder shuttles, bicycle storage facilities, bike-sharing, and car-sharing.
- **Policy C2: Regional Transportation and Commuter Transit.** Coordinate regionally with agencies and the private sector to establish viable rail, bus, and carpooling options for commuters, and create an energy efficient regional transportation network.
- Possible Implementation Actions to be Considered
 - **Action C2.1: Regional Transportation Networks.** Actively pursue regional transportation solutions through SBCAG to address regional transportation needs, in conjunction with regional housing and development patterns that are responsive to the requirements of AB 32 and SB 375.

City of Santa Barbara Municipal Code

- Municipal Code Chapter 22.65 applies to any property located within 250 feet of United States Route 101 (U.S. 101) as measured from the outer edge of the nearest highway travel lane. Chapter 22.65 sets standards for the development of residential uses and other sensitive land uses within 250 feet of U.S. 101, including building orientation, implementation of vegetative screening, and implementation of air infiltration systems. Chapter 22.65 permits the Community Development Director or their designee to grant approval for residential uses and other sensitive land uses within 250 feet of U.S. 101 if project design features satisfactorily address air quality risks.

SBCAG 2050 RTP/SCS

On August 19, 2021, Santa Barbara County Association of Governments (SBCAG) approved Connected 2050, the region's long-range Regional Transportation Plan (RTP) and Sustainable Communities Strategy (SCS). The following Connected 2050 policies would be applicable to air quality impacts resulting from the Housing Plan:

- **Policy 1.2.1: Air Quality.** Transportation planning and projects shall be designed to lead to reductions in greenhouse gas and criteria pollutant emissions, consistent with the air quality goals of the region, including targets for greenhouse gas emissions from passenger vehicles in 2020 and 2035 as required by Senate Bill 375 (SB 375).
- **Policy 1.3.1: Alternative Fuels and Energy.** Transportation planning and projects shall encourage the use of alternative fuels, and the application of advanced transportation and energy technologies to reduce vehicular emission production and energy consumption.
- **Policy 2.2.2: System Maintenance, Expansion, and Efficiency.** Transportation planning and projects shall promote the maintenance and enhancement of the existing highway and roadway system as a high priority.
- **Policy 2.3.1: Alternative Transportation Modes.** Transportation planning and projects shall encourage alternatives to single-occupancy vehicle trips and the use alternative transportation modes to reduce vehicle miles traveled and increase bike, walk and transit mode share.
- **Policy 2.3.2: Alternative Transportation Modes.** Transportation planning and projects shall provide for a variety of transportation modes and ensure connectivity within and between transportation modes both within and outside the Santa Barbara region. Alternative mode planning and projects shall be compatible with neighboring regions' transportation systems.

SBCAPCD Regulations

To minimize potential impacts from project emissions, the SBCAPCD implements rules and regulations for emissions that may be generated by various uses and activities. The rules and regulations detail pollution-reduction measures that must be implemented during construction and operation of projects. Rules and regulations relevant to the project include the following:

Regulation II, Rule 206 (Conditional Approval of Authority to Construct or Permit to Operate)

This rule governs the construction and operation of any new, modified, or reevaluated source for which a permit is required, subject to specified written conditions. Such conditions are for the purpose of ensuring that construction and operation of the source complies with all applicable local, state, and federal air quality laws, rules, and regulations.

Regulation III, Rule 303 (Nuisance)

This rule states that a person shall not discharge from any source whatsoever such quantities of air contaminants or other material in violation of Section 41700 of the Health and Safety Code which cause injury, detriment, nuisance or annoyance to any considerable number of persons or to the public or which endanger the comfort, repose, health or safety or any such persons or the public or which cause or have a natural tendency to cause injury or damage to business or property.

Regulation III, Rule 323 (Architectural Coatings)

This rule governs the manufacture, distribution, and sale of architectural coatings and limits the reactive organic gases content in paints and paint solvents. Although this rule does not directly apply to the project, it does dictate the ROG content of paint available for use during the construction.

Regulation III, Rule 345 (Control of Fugitive Dust from Construction and Demolition Activities)

This rule applies to any activity associated with construction or demolition of a structure or structures. Activities subject to this regulation are also subject to Rule 302 (Visible Emissions) and Rule 303 (Nuisance).

Regulation VIII, Rule 802 (New Source Review)

The purpose of New Source Review is to provide for the review of new and modified stationary sources of air pollution and provide mechanisms by which Authorities to Construct for such sources may be granted without interfering with the attainment or maintenance of any ambient air quality standard, preventing reasonable further progress towards the attainment or maintenance of any ambient air quality standard and without interfering with the protection of areas designated attainment or unclassifiable. This rule applies to any applicant for a new or modified stationary source which emits or may emit any affected pollutant.

4.2.3 Impact Analysis

a. Methodology and Significance Thresholds

This analysis follows the guidance and methodologies recommended in the CEQA Appendix G thresholds and SBCAPCD's *Scope and Content of Air Quality Sections in Environmental Documents* (2022b).

Appendix G of the *CEQA Guidelines* states a project may have a significant adverse impact if it would:

1. Conflict with or obstruct implementation of the applicable air quality plan;
2. Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard;
3. Expose sensitive receptors to substantial pollutant concentrations; and/or
4. Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

Plan Consistency and Regional Criteria Pollutant Emissions

Consistency with land use and population forecasts in local and regional plans, including the 2022 Ozone Plan (previously known as the Clean Air Plan), is required under CEQA for all projects. As SBCAPCD has not established quantitative thresholds related to criteria pollutant release for plan-level documents, the Housing Plan's potential impacts related to the release of criteria air pollutants are evaluated based on its consistency with the 2022 Ozone Plan which addresses SBCAPCD's progress toward attaining federal and state standards for criteria pollutants for which the SCCAB is currently in nonattainment.

The 2022 Ozone Plan relies primarily on the land use and population projections provided by SBCAG and CARB on-road emissions forecast as a basis for vehicle emission forecasting (SBCAPCD 2022b). The 2022 Ozone Plan uses SBCAG's Countywide Regional Transportation Demand Model for on-road mobile source emissions estimates and SBCAG's socio-economic projections contained in the most recent RTP-SCS to form the basis for some stationary and area source growth forecasts.

The SBCAPCD's *Scope and Content of Air Quality Sections in Environmental Documents* states that any general plan amendment that would provide for increased population growth above that forecasted in the most recently adopted Ozone Plan is inconsistent with the Ozone Plan and may have a significant impact on air quality (SBCAPCD 2022a).

Temporary Criteria Pollutant Emissions

Standard dust control measures are required to be implemented for any discretionary project involving earthmoving activities, regardless of size or duration. According to the SBCAPCD, proper implementation of these required measures reduces fugitive dust emissions to a level that is less than significant (SBCAPCD 2022a).

Long-Term Regional Criteria Pollutant Emissions

For informational purposes, operational emissions were quantified using the California Emissions Estimator Model (CalEEMod) version 2022.1. In CalEEMod, operational sources of criteria pollutant emissions include area, energy, and mobile sources. Area emissions were based on CalEEMod defaults for each land use type. Electricity use assumed CalEEMod default values and Title 24 compliance based on the construction/operational year. Modeling for water and wastewater were based on CalEEMod defaults. Mobile source emissions consist of emissions generated by vehicles to and from the development sites proposed under the Housing Plan. Average daily VMT was derived from CalEEMod default trip generation rates for the mid-rise apartments land use subtype.

Toxic Air Contaminants

The USEPA considers those pollutants that could cause cancer risks between one in 10,000 (1.0×10^{-4}) and one in one million (1.0×10^{-6}) for risk management. Proposition 65 (California Health and Safety Code Section 25249.6), enacted in 1986, prohibits a person in the course of doing business from knowingly and intentionally exposing any individual to a chemical that has been listed as known to the state to cause cancer or reproductive toxicity without first giving clear and reasonable warning. For a chemical that is listed as a carcinogen, the "no significant risk" level under Proposition 65 is defined as the level that is calculated to result in not more than one excess case of cancer in 100,000 individuals (1.0×10^{-5}). The SBCAPCD recommends the use of this risk level (also reportable as 10 in one million) as the significance threshold for TACs (SBCAPCD 2022a). The SBCAPCD also recommends that the non-carcinogenic hazards of TACs should not exceed a hazard index (the summation of the hazard quotients for all chemicals to which an individual would be exposed) of 1.0 for either chronic or acute effects (SBCAPCD 2022a).

b. Project Impacts and Mitigation Measures

Threshold 1: Would the project conflict with or obstruct implementation of the applicable air quality plan?

Threshold 2: Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

Impact AQ-1 THE HOUSING PLAN WOULD NOT CONFLICT WITH THE 2022 OZONE PLAN, AND THEREFORE WOULD NOT PROMOTE THE RELEASE OF A CUMULATIVELY CONSIDERABLE NET INCREASE OF A CRITERIA POLLUTANT FOR WHICH THE SOUTH CENTRAL COAST AIR BASIN IS IN NON-ATTAINMENT. THIS IMPACT WOULD BE LESS THAN SIGNIFICANT.

The potential for the Housing Plan to result in a cumulatively considerable net increase of criteria pollutants in the SCCAB is evaluated based on the Housing Plan's consistency with the 2022 Ozone Plan. The 2022 Ozone Plan addresses SBCAPCD's progress toward attaining federal and state standards for criteria pollutants for which the SCCAB is currently in nonattainment.

A project would conflict with or obstruct implementation of the applicable air quality plan if a project is not consistent with the land use and population forecasts that underlie the air pollutant emissions forecasts contained in the plan. Therefore, consistency with the 2022 Ozone Plan is based on whether the population growth accommodated by the Housing Plan was accounted for in SBCAG's 2050 Regional Growth Forecast. In addition, in order to be consistent with the 2022 Ozone Plan, projects involving earthmoving activities must implement SBCAPCD's standard dust control measures. In accordance with the 2022 Ozone Plan, standard dust control measures would be implemented during grading and earth moving activities for new development requiring a grading permit. Similarly, all construction activities within the SBCAPCD's jurisdiction are required to comply with the requirements of SBCAPCD Rule 345 (Control of Fugitive Dust from Construction and Demolition Activities) which would reduce temporary construction emissions.

Vehicle use and emissions are directly related to population, as additional residents would result in more vehicular use; however, implementation of the Housing Plan would also promote infill development and land use patterns that discourage vehicle use and reduce vehicle dependency. Populations that remain within 2022 Ozone Plan and SBCAG forecasts are accounted for within SBCAPCD emissions inventories. When population growth and employment growth exceed these forecasts, emission inventories could be surpassed, affecting attainment status. The 2022 Ozone Plan is based on population projections provided by SBCAG and the U.S. Department of Finance, which are shown in Table 4.2-2. Any general plan amendment (which, for the purpose of this evaluation, includes updated elements such as the Housing Plan) that would provide for increased population growth above that forecasted in the 2022 Ozone Plan may have a significant impact on air quality.

Table 4.2-2 Population Projections for the City of Santa Barbara

Year	Population
2022	86,591
2035	99,900

Source: SBCAG 2019; DOF 2022

Development forecasted in accordance with the Housing Plan anticipates a potential increase of up to 8,001 residential units, consistent with Santa Barbara's RHNA allocation for the 2023-2031 planning period. SBCAG's 2050 Regional Growth Forecast projections are used in the methodology for allocating the RHNA to cities within SBCAG jurisdiction. The Housing Plan does not propose any changes in land use to meet the City's RHNA allocation. Therefore, the Housing Plan would not result in increased residential density limits or other changes which could increase population growth such that it exceeds the growth assumptions (99,900 people by 2035) of the RHNA allocation and, by extension, the 2050 Regional Growth Forecast. Because the Housing Plan would be consistent with the SBCAG 2050 Regional Growth Forecast, the Housing Plan would be consistent with underlying growth assumptions the 2022 Ozone Plan utilizes to forecast emissions within the SCCAB. Therefore, the Housing Plan would have a less than significant impact related to conflicts with an air quality plan and release of criteria pollutants.

For informational purposes, operational emissions of the Housing Plan were modeled using CalEEMod version 2022.1. Table 4.2-3 provides the CalEEMod outputs. These results represent a conservative estimate of potential long-term criterial pollutant emissions associated with up to 8,001 new housing units in the city, and are not intended to be compared to SBCAPCD's adopted thresholds of significance for individual projects. Individual projects that exceed APCD screening criteria listed within the *Scope and Content of Air Quality Sections in Environmental Documents* would be subject to additional air quality analysis (SBCAPCD 2022a).

Table 4.2-3 Estimated Operational Criteria Air Pollutant Emissions (lbs/day)

Emission Source	Maximum Daily Emissions (lbs/day)					
	ROC	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Area	28	149	309	<1	<1	<1
Energy ¹	0	0	0	0	0	0
Mobile	90	86	370	1	24	4
Housing Plan Buildout Emissions	118	235	679	1	24	4

Notes: See Appendix B for modeling results. Some numbers may not add up precisely due to rounding considerations.

Mitigation Measures

No mitigation is required because this impact would be less than significant.

Threshold 3: Would the project expose sensitive receptors to substantial pollutant concentrations?

Impact AQ-2 DEVELOPMENT FACILITATED BY THE HOUSING PLAN COULD RESULT IN CONSTRUCTION ACTIVITY THAT COULD PRODUCE TOXIC AIR CONTAMINANT EMISSIONS IN PROXIMITY TO RESIDENTIAL RECEPTORS. **Mitigation Measure AQ-1** WOULD REQUIRE LARGE CONSTRUCTION PROJECTS TO USE EQUIPMENT MEETING CARB TIER 3 OR HIGHER FOR OFF-ROAD HEAVY-DUTY DIESEL ENGINES, WHICH RESULTS IN SUBSTANTIALLY LOWER TOXIC AIR CONTAMINANT EMISSIONS THAN OLDER EQUIPMENT. **IMPLEMENTATION OF Mitigation Measure AQ-1** WOULD REDUCE THIS POTENTIAL IMPACT TO A LESS THAN SIGNIFICANT LEVEL.

Carbon Monoxide Hotspots

A carbon monoxide hotspot is a localized concentration of carbon monoxide that is above the NAAQS and CAAQS for carbon monoxide. Localized carbon monoxide hotspots can occur at

intersections with heavy peak hour traffic. Specifically, hotspots can be created at intersections where traffic levels are sufficiently high such that the local carbon monoxide concentration exceeds the federal one-hour standard of 35.0 parts per million (ppm) or the federal and state eight-hour standard of 9.0 ppm (CARB 2016).

The SCCAB is in attainment of the carbon monoxide NAAQS and CAAQS and the SBCAPCD no longer records carbon monoxide concentrations at their monitoring stations. Furthermore, the SBCAPCD states that due to the relatively low background ambient carbon monoxide levels in Santa Barbara County, localized carbon monoxide impacts associated with congested intersections are not expected to exceed the CO health-related air quality standards. Therefore, carbon monoxide “Hotspot” analyses are no longer required in Santa Barbara (SBCAPCD 2022a).

Based on the low background level of carbon monoxide in the project area, improved vehicle emissions standards for new vehicles in accordance with state and federal regulations, and the low level of operational carbon monoxide emissions anticipated for reasonably foreseeable development facilitated by the Housing Plan, the Housing Plan would not create new hotspots or contribute substantially to existing hotspots. Therefore, the Housing Plan would not expose sensitive receptors to substantial concentrations of carbon monoxide.

Toxic Air Contaminants

TACs are defined by California law as air pollutants that may cause or contribute to an increase in mortality or an increase in serious illness, or which may pose a present or potential hazard to human health. The following subsections discuss the project’s potential to result in impacts related to TAC emissions during construction and operation.

Construction

Construction-related activities from development facilitated by the Housing Plan would result in temporary project-generated emissions of DPM exhaust emissions from off-road, heavy-duty diesel equipment required for mass grading, excavation and trenching, building construction, and other construction activities. DPM is identified as a TAC by CARB. The potential cancer risk from the inhalation of DPM (discussed in the following paragraphs) outweighs the potential non-cancer health impacts (CARB 2022b) and is therefore the focus of this analysis.

The extent of DPM emissions from any individual construction project depends upon the following factors: (1) the amount of disturbed soils; (2) the length of disturbance time; (3) whether existing structures are demolished; (4) whether excavation is involved; and (5) whether transporting excavated materials off site is necessary. DPM emissions would be reduced during the other phases of individual project construction because activities such as building construction and architectural coating require less diesel-fueled construction equipment.

As discussed in Section 4.2.3.a, SBCAPCD has not established plan-level significance thresholds for construction air pollutant emissions, and SBCAPCD CEQA guidance does not require preparation of a health risk assessment for short-term construction emissions. At this time, development facilitated by the proposed Housing Plan do not have sufficient detail (e.g., construction schedule, amount of soil export, specific buildup parameters) to allow for project-level analysis given the programmatic nature of the plan. As a result, it would be speculative to analyze project-level impacts. In addition, SBCAPCD does not recommend project-level emissions thresholds for construction activity. Therefore, a qualitative approach to characterizing construction-related air emissions has been employed for this analysis.

According to the California Office of Environmental Health Hazard Assessment, construction of individual projects lasting longer than two months could potentially expose sensitive receptors to substantial pollutant concentrations and therefore could result in potentially significant health risk impacts (California Office of Environmental Health Hazard Assessment 2015). In addition, individual residential development projects larger than single-unit residences, ADUs, or duplexes can result in potentially significant health risk impacts when equipment meeting CARB Tier 3 or higher for off-road heavy-duty diesel engines, which results in substantially lower TAC emissions than older construction equipment, is not utilized. SBCAPCD recommends diesel equipment meeting the CARB Tier 3 or higher emission standards be used in place of older construction equipment to the maximum extent feasible. As a result, the construction of certain individual housing development projects – those with three or more units and a construction duration longer than two months – could result in potentially significant health risk impacts if construction equipment does not meet CARB Tier 3 or higher for off-road heavy-duty diesel engines. Therefore, this impact would be potentially significant, requiring mitigation.

Operation

EFFECTS ON EXISTING SENSITIVE RECEPTORS

CARB's guidelines do not designate residential uses as land uses that generate substantial TAC emissions. As a result, this analysis considers quantities of hazardous TACs that could be generated by new residential uses (e.g., cleaning solvents, paints, landscape pesticides, etc.) as below thresholds warranting further study under the California Accidental Release Program. Because the Housing Plan would not result in new nonresidential development, and new residential development would not include substantial new TAC sources, the Housing Plan would not result in exposure of existing sensitive receptors to significant carcinogenic or toxic air contaminants and would be consistent with CARB and SBCAPCD guidelines.

EFFECTS ON NEW SENSITIVE RECEPTORS

As described in Section 4.2.1.e, CARB suggests that sensitive receptors located within 1,000 feet of a freeway could be adversely impacted by poor air quality and recommends strategies to reduce exposure to diesel particulates, including the use of indoor filtration systems (CARB 2017). SBCAPCD recommends designing residential projects to orient sensitive receptors 500 feet away from the freeway to reduce potential health impacts (SBCAPCD 2022a). New residential development facilitated by the Housing Plan could occur in proximity to U.S. 101. As a result, new sensitive receptors could be exposed to higher levels of DPM and carbon monoxide associated with the freeway. Health risks from vehicle emissions on U.S. 101 represent an existing condition, and new residential development associated with the Housing Plan would not substantially exacerbate this condition.

The California Supreme Court in a December 2015 opinion (*California Building Industry Assn. v. Bay Area Air Quality Management District*) confirmed that CEQA is concerned with the impacts of a project on the environment, not the effects the existing environment may have on a project. Therefore, potential health risks in the vicinity of U.S. 101 are described here for informational purposes and do not constitute a significant impact pursuant to CEQA. Furthermore, City staff follow SBCAPCD guidance regarding potential health risk effects when reviewing residential development applications, which may include project-specific conditions of approval to reduce health risks, such as orienting windows, doors, and balconies away from potential sources of DPM and carbon

monoxides, and forced air ventilation with filter screens on outside air intake ducts, which have been found to reduce residents exposure to DPM, carbon monoxides, and other toxic air contaminants.

Mitigation Measures

The following mitigation measure would be implemented due to potentially significant health risk impacts from TAC exposure during project construction.

AQ-1 Construction Equipment Exhaust Control Measures

- The City shall develop and enforce appropriate Municipal Code amendments, or other adopted regulations, to require individual residential projects of three or more units and involving demolition, mass grading, or excavation and trenching phases of longer than two months, to use off-road heavy-duty diesel engines that meet CARB-certified Tier 3 or higher emission standards or employ CARB-certified Level 3 diesel particulate filters to the extent that this equipment is commercially available. “Commercially available” means the availability of required equipment in geographic proximity to the project site and within a reasonable timeframe relative to critical path construction timing. If Tier 3 equipment is not commercially available, documentation shall be provided by the project applicant to the City stating that Tier 3 equipment is not commercially available with supporting evidence from the contractor. If CARB-certified Level 3 diesel particulate filters are utilized, they shall be kept in working order and maintained in operable condition according to manufacturer’s specifications, as applicable. Projects will be conditioned to comply with all the applicable regulatory requirements, including applicable regulations of the California Air Quality Control Board.

Significance after Mitigation

Implementation of Mitigation Measure AQ-1 would reduce potential residual impacts associated with exposure of sensitive receptors to substantial pollutant concentrations of DPM and TACs to a less than significant level.

Threshold 4: Would the project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

Impact AQ-3 FUTURE DEVELOPMENT FACILITATED BY THE HOUSING PLAN WOULD NOT CREATE OBJECTIONABLE ODORS THAT COULD AFFECT A SUBSTANTIAL NUMBER OF PEOPLE OR EXPOSE FUTURE RESIDENTS TO ODORS THAT WOULD PRODUCE A PUBLIC NUISANCE OR HAZARD. THIS IMPACT WOULD BE LESS THAN SIGNIFICANT.

The occurrence and severity of objectionable odors depend on a number of factors, including the nature, frequency, and intensity of the source; the wind speeds and direction; and the sensitivity of the receiving location. Although objectionable odors seldom cause physical harm, they can be perceived as a nuisance, cause distress among the public, and result in citizen complaints.

The Housing Plan would facilitate the development of additional housing units in a primarily urbanized area with existing residential, commercial, and industrial uses. Construction activities for development forecasted in accordance with the Housing Plan may produce temporary odors. Examples of potential odors produced by construction activities include concentrations of unburned hydrocarbons from construction equipment tailpipes and reactive organic gases/compounds from architectural coatings. Such odors generally disperse rapidly from individual project sites, occur at

magnitudes that would not affect substantial numbers of people, and would be limited to the temporary construction period.

The City of Santa Barbara Municipal Code Section 30.180.120 prohibits a person or business to cause or allow the emission of offensive, noxious, or foul odors in concentrations which are offensive to a reasonable person, which produce a public nuisance or hazard on adjoining property, or which could be detrimental to human, plant, or animal life, in inland areas (City of Santa Barbara 2021b). Additionally, construction activities forecasted in accordance with the Housing Plan would be required to comply with SBCAPCD Rule 303, which regulates nuisance odors (SBACPD 1978). Accordingly, the construction of future development in accordance with the Housing Plan is not anticipated to create objectionable odors affecting a substantial number of people or expose future residents to odors in concentrations that would produce a public nuisance or hazard. Therefore, this impact would be less than significant.

Mitigation Measures

No mitigation is required because this impact would be less than significant.

4.2.4 Cumulative Impacts

Project related air pollution may combine with other cumulative projects (past, present, and reasonably foreseeable future) to violate criteria pollutant standards if the existing background sources cause nonattainment conditions. Air districts manage attainment of the criteria pollutant standards by adopting rules, regulations, and attainment plans, which comprise a multifaceted programmatic approach to such attainment.

The geographic scope for analyzing cumulative air quality impacts is the SCCAB. The SCCAB is designated a nonattainment area for the ozone CAAQS and the PM₁₀ CAAQS. The SCCAB is in attainment of all other NAAQS and CAAQS. As described under Impact AQ-1, the SBCAPCD's approach for assessing cumulative impacts is based on consistency with the latest adopted Ozone Plan. The Housing Plan would not result in exceedance of the population forecasts upon which the 2022 Ozone Plan is based and would therefore be consistent with the Ozone Plan. Additionally, SBCAPCD standard dust control measures are required for all earthmoving activities in the SBCAPCD's jurisdiction, which would reduce Citywide emissions of PM₁₀ from construction facilitated by the Housing Plan. Therefore, the Housing Plan would not conflict with or obstruct implementation of the 2022 Ozone Plan. Because the potential for the Housing Plan to result in a cumulatively considerable net increase of criteria pollutants in the SCCAB is evaluated based on the Housing Plan's consistency with the 2022 Ozone Plan, the Housing Plan would not result in a cumulatively considerable net increase in criteria pollutants for which the SCCAB is in non-attainment. Therefore, the Housing Plan's contribution to cumulative air quality impacts would not be cumulatively considerable.

As identified under Impact AQ-2, the Housing Plan would result in a potentially significant impact related to DPM and TAC exposure within the City. Health risk impacts are localized to the immediate vicinity of DPM and TAC sources, such that people affected by construction-related TAC emissions generated at one housing site would likely not be affected by construction-related TAC emissions generated at another housing site should construction activities occur simultaneously. Discussion of these impacts considers the cumulative nature of the pollutants in the region; for example, the cancer risk and non-cancer risk thresholds have been set pursuant to existing cancer risks in the area and exceeding those thresholds would be considered a cumulative impact. Implementation of Mitigation Measure AQ-1 would ensure that construction activity associated with future

development under the Housing Plan would not expose sensitive receptors to cumulatively considerable pollutant concentrations from DPM or TACs. Therefore, the Housing Plan's contribution to cumulative air quality impacts related to these pollutants would not result in a cumulatively considerable impact.

This page intentionally left blank.